Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684213

RESUMEN

A methodology based on the use of asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS with size fraction-targeted isotope dilution analysis (IDA) has been developed, validated, and applied for the first time to determine the mass fraction of nanoscale silica (SiO2). For this purpose, 29Si-enriched SiO2 nanoparticles, to be used as an IDA spike/internal standard, were synthesized and characterized in-house. Double IDA was used to quantify an aqueous suspension of Stöber silica particles of similar characteristics to those of the 29SiO2 nanoparticle (NP) spike using a representative test material of natural Si isotopic composition as the calibrant. For fumed SiO2 NP in a highly complex food matrix, a methodology based on single IDA with AF4/ICP-MS using the same 29SiO2 NP spike was developed and validated. Relative expanded measurement uncertainties (k = 2) of 4% (double IDA) and 8% (single IDA) were achieved for nanoscale silica mass fractions of 5143 and 107 mg kg-1 in water suspension and food matrix, respectively. To assess the accuracy of AF4/ICP-IDMS for the characterization of SiO2 NP in a food matrix, standard addition measurements on samples spiked with Aerosil AF200, also in-house characterized for Si mass fraction, were undertaken, with an average recovery of 95.6 ± 4.1% (RSD, n = 3) obtained. The particle-specific IDA data obtained for both SiO2 NP-containing samples were also compared with that of post-AF4 channel external calibration using inorganic Si standards. The mass fractions obtained by IDA agreed well with those obtained by external calibration within their associated measurement uncertainties.

2.
Anal Methods ; 13(33): 3641-3648, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34328489

RESUMEN

Species-specific isotope dilution mass spectrometry (SS-IDMS) has been the calibration method of choice for high accuracy speciation analysis because it can correct for detector sensitivity drifts, matrix effects, and analyte loss during sample preparation and analysis. However, in many cases SS-IDMS calibration is either not applicable (e.g. for monoisotopic elements) or not feasible (e.g. limited by the cost and availability of like-for-like isotopically enriched species). The work presented here demonstrates the potential of a novel on-column species-specific internal calibration approach, which is based on the chromatographic injection of the same species of the analyte as the internal standard (IS), after the sample injection. It can compensate for on-column analyte losses and signal drift and can be applied with any detector capable of recording time-resolved data, provided that enough species resolution can be achieved. The feasibility of this novel calibration strategy for accurate quantitative elemental speciation in complex matrices is demonstrated here through the analysis of inorganic arsenic in rice. An expanded uncertainty (k = 2) of <10% was obtained for a mass fraction range of 60 to 300 µg kg-1 inorganic-As (i-As) in dry rice products. The method is currently used for the certification of i-As in baby food matrices to support Commission Regulation (EU) 2015/1006 in regard to the maximum levels of i-As in foodstuffs.


Asunto(s)
Arsenicales , Oryza , Calibración , Estudios de Factibilidad , Espectrometría de Masas
3.
Anal Bioanal Chem ; 410(3): 1029-1037, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29030672

RESUMEN

Long-lived high abundance radionuclides are of increasing interest with regard to decommissioning of nuclear sites and longer term nuclear waste storage and disposal. In many cases, no routine technique is available for their measurement in nuclear waste and low-level (ng kg-1) environmental samples. Recent advances in ICP-MS technology offer attractive features for the selective and sensitive determination of a wide range of long-lived radionuclides. In this work, inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS)-based methodology, suitable for accurate routine determinations of 93Zr at very low (ng kg-1) levels in the presence of high levels (µg kg-1) of the isobaric interferents 93Nb and 93Mo (often present in nuclear waste samples), is reported for the first time. Additionally, a novel and systematic strategy for method development based on the use of non-radioactive isotopes is proposed. It relies on gas-phase chemical reactions for different molecular ion formation to achieve isobaric interference removal. Using cell gas mixtures of NH3/He/H2 or H2/O2, and suitable mass shifts, the signal from the 93Nb and 93Mo isobaric interferences on 93Zr were suppressed by up to 5 orders of magnitude. The achieved limit of detection for 93Zr was 1.3 × 10-5 Bq g-1 (equivalent to 0.14 ng kg-1). The sample analysis time is 2 min, which represents a significant improvement in terms of sample throughput, compared to liquid scintillation counting methods. The method described here can be used for routine measurements of 93Zr at environmentally relevant levels. It can also be combined with radiometric techniques for use towards the standardisation of 93Zr measurements. Graphical abstract Interference-free determination of 93Zr in the presence of high concentrations of isobaric 93Mo and 93Nb by ICP-MS/MS.

4.
Talanta ; 152: 251-8, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26992518

RESUMEN

Polybrominated diphenylethers (PBDE), used as flame retardants, are named as priority substances in the Directive 2000/60/EC of the European parliament and of the council establishing a framework for Community action in the field of water policy. An annual average environmental quality standard (EQS) for inland surface waters of 0.0005 µg/L (0.0002 µg/L for other surface waters) for PBDE congeners involved in the technical penta-PBDE mixtures containing PBDE with five bromine atoms has been established. The directives focus especially on the congeners PBDE 28, 47, 99, 100, 153 and 154 contained in the penta-PBDE mixture. Up to now, no reference measurement procedures have been established reaching the limits of quantification (LOQs) and the associated uncertainties as defined in the directives with results traceable to the SI. Within a recent European project on metrology, different approaches for the traceable quantification of PBDE, based on liquid/liquid or solid phase extraction followed by the detection with gas chromatography coupled to either inductively coupled plasma mass spectrometry or triple quadrupole mass spectrometry, were investigated and the related LOQs and expanded uncertainties of the results were compared. A complete uncertainty budget for each method was estimated according to the Guide to the Expression of Uncertainty in Measurement (GUM). All presented analytical procedures can serve as reference measurement procedures regarding the LOQs and their associated expanded uncertainties for monitoring the six priority PBDEs named above. LOQs as low as 0.026 ng/kg with an associated expanded uncertainty of 0.002 ng/kg could be achieved.


Asunto(s)
Monitoreo del Ambiente/legislación & jurisprudencia , Retardadores de Llama/aislamiento & purificación , Agua Dulce/química , Éteres Difenilos Halogenados/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Monitoreo del Ambiente/métodos , Humanos , Límite de Detección , Extracción Líquido-Líquido/métodos , Extracción en Fase Sólida/métodos , Espectrofotometría Atómica
5.
Anal Bioanal Chem ; 407(11): 3055-67, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25486919

RESUMEN

One of the unresolved issues of the European Water Framework Directive is the unavailability of realistic water reference materials for the organic priority pollutants at low nanogram-per-liter concentrations. In the present study, three different types of ready-to-use water test materials were developed for polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and tributyltin (TBT) at nanogram-per-liter levels. The first type simulated the dissolved phase in the water and comprised of a solution of humic acids (HA) at 5 mg L(-1) dissolved organic carbon (DOC) and a spike of the target compounds. The second type of water sample incorporated the particulate phase in water. To this end, model suspended particulate matter (SPM) with a realistic particle size was produced by jet milling soil and sediments containing known amounts of PAHs, PBDEs and TBT and added as slurry to mineral water. The most complex test materials mimicked "whole water" consequently containing both phases, the model SPM and the HA solution with the target analytes strongly bound to the SPM. In this paper, the development of concepts, processing of the starting materials, characterisation of the HA and model SPMs as well as results for homogeneity and stability testing of the ready-to-use test materials are described in detail.

6.
Anal Bioanal Chem ; 407(3): 869-82, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25168118

RESUMEN

Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio measurements. However, data obtained in this study show that instrumental mass discrimination in MC-ICP-MS is consistent with mass-dependent Mo isotope fractionation. This was demonstrated by a good agreement between experimentally obtained and theoretically expected values of the exponent of isotope fractionation, ß, for each triad of Mo isotopes.

7.
Environ Sci Technol ; 46(3): 1716-23, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22206507

RESUMEN

In this work, 13 selenium species in flue gas desulfurization (FGD) waters from coal-fired power plants were separated and quantified using anion-exchange chromatography coupled to inductively coupled plasma mass spectrometry. For the first time, we identified both selenosulfate (SeSO(3)(2-)) and selenocyanate (SeCN(-)) in such waters, using retention time matching and confirmation by electrospray mass spectrometry. Besides selenite and selenate, selenosulfate was the most frequently occurring selenium species. It occurred in most samples and constituted a major fraction (up to 63%) of the total selenium concentration in waters obtained from plants employing inhibited oxidation scrubbers. Selenocyanate occurred in about half of the tested samples, but was only a minor species (up to 6% of the total selenium concentration). Nine additional Se-containing compounds were found in FGD waters, but they remain unidentified at this point.


Asunto(s)
Contaminación del Aire/prevención & control , Carbón Mineral , Centrales Eléctricas , Compuestos de Selenio/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Cianatos/análisis , Espectrometría de Masas , Sulfatos/análisis , Estados Unidos
8.
Talanta ; 69(5): 1112-7, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18970690

RESUMEN

Analytical procedure for the determination of toxicologically relevant arsenic (the sum of arsenite, arsenate, monomethylarsonate and dimethylarsinate) in urine by flow injection hydride generation and collection of generated inorganic and methylated hydrides on an integrated platform of a transverse-heated graphite atomizer for electrothermal atomic absorption spectrometric determination (ETAAS) is elaborated. Platforms are pre-treated with 2.7 micromol of zirconium and then with 0.10 micromol of iridium which serve both as an efficient hydride sequestration medium and permanent chemical modifier. Arsine, monomethylarsine and dimethylarsine are generated from diluted urine samples (10-25-fold) in the presence of 50 mmol L(-1) hydrochloric acid and 70 mmol L(-1)l-cysteine. Collection, pyrolysis and atomization temperatures are 450, 500, 2100 and 2150 degrees C, respectively. The characteristic mass, characteristic concentration and limit of detection (3sigma) are 39 pg, 0.078 microg L(-1) and 0.038 microg L(-1) As, respectively. The limits of detection in urine are ca. 0.4 and 1 microg L(-1) with 10- and 25-fold dilutions. The sample throughput rate is 25 h(-1). Applications to several urine CRMs are given.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...