Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 63(18): 2310-2322, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39194960

RESUMEN

HYPOTHESIS: In this communication, we test the hypothesis that sulfotransferase 1C2 (SULT1C2, UniProt accession no. Q9WUW8) can modulate mitochondrial respiration by increasing state-III respiration. METHODS AND RESULTS: Using freshly isolated mitochondria, the addition of SULT1C2 and 3-phosphoadenosine 5 phosphosulfate (PAPS) results in an increased maximal respiratory capacity in response to the addition of succinate, ADP, and rotenone. Lipidomics and thin-layer chromatography of mitochondria treated with SULT1C2 and PAPS showed an increase in the level of cholesterol sulfate. Notably, adding cholesterol sulfate at nanomolar concentration to freshly isolated mitochondria also increases maximal respiratory capacity. In vivo studies utilizing gene delivery of SULT1C2 expression plasmids to kidneys result in increased mitochondrial membrane potential and confer resistance to ischemia/reperfusion injury. Mitochondria isolated from gene-transduced kidneys have elevated state-III respiration as compared with controls, thereby recapitulating results obtained with mitochondrial fractions treated with SULT1C2 and PAPS. CONCLUSION: SULT1C2 increases mitochondrial respiratory capacity by modifying cholesterol, resulting in increased membrane potential and maximal respiratory capacity. This finding uncovers a unique role of SULT1C2 in cellular physiology and extends the role of sulfotransferases in modulating cellular metabolism.


Asunto(s)
Ésteres del Colesterol , Colesterol , Mitocondrias , Membranas Mitocondriales , Sulfotransferasas , Animales , Colesterol/metabolismo , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Mitocondrias/metabolismo , Ésteres del Colesterol/metabolismo , Membranas Mitocondriales/metabolismo , Ratones , Respiración de la Célula/fisiología , Respiración de la Célula/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Riñón/metabolismo , Ratones Endogámicos C57BL
2.
Proc Natl Acad Sci U S A ; 121(11): e2312082121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446854

RESUMEN

Chiral plasmonic surfaces with 3D "forests" from nanohelicoids should provide strong optical rotation due to alignment of helical axis with propagation vector of photons. However, such three-dimensional nanostructures also demand multi-step nanofabrication, which is incompatible with many substrates. Large-scale photonic patterns on polymeric and flexible substrates remain unattainable. Here, we demonstrate the substrate-tolerant direct-write printing and patterning of silver nanohelicoids with out-of-plane 3D orientation using circularly polarized light. Centimeter-scale chiral plasmonic surfaces can be produced within minutes using inexpensive medium-power lasers. The growth of nanohelicoids is driven by the symmetry-broken site-selective deposition and self-assembly of the silver nanoparticles (NPs). The ellipticity and wavelength of the incident photons control the local handedness and size of the printed nanohelicoids, which enables on-the-fly modulation of nanohelicoid chirality during direct writing and simple pathways to complex multifunctional metasurfaces. Processing simplicity, high polarization rotation, and fine spatial resolution of the light-driven printing of stand-up helicoids provide a rapid pathway to chiral plasmonic surfaces, accelerating the development of chiral photonics for health and information technologies.

3.
J Phys Chem Lett ; 15(6): 1618-1622, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306468

RESUMEN

The chirality of biomacromolecules is critical for their function, but the optical signal of this chirality is small in the visible range. Plasmonic nanoparticles are antennas that can couple to this chiral signal. Here, we examine the molecular-scale mechanism behind the induced circular dichroism of gold nanorods (AuNRs) in solution with insulin fibrils and the fibril-intercalating dye thioflavin T (ThT) with polarization-resolved single-molecule fluorescence and single-particle photoluminescence (PL) imaging. We compared the PL upon excitation by left- and right-handed circularly polarized light to calculate the differential absorbance of AuNRs near insulin fibrils with and without ThT. Overall, our results indicate that AuNRs do not act as chiral absorbers near constricted ThT molecules. Instead, we hypothesize that fibrils promote AuNR aggregation, and this templating is mediated by subtle changes in the solution conditions; under the right conditions, only a few chiral aggregates with significantly higher circular dichroism signal contribute to a large net circular dichroism.


Asunto(s)
Insulinas , Nanopartículas del Metal , Oro , Benzotiazoles , Dicroismo Circular
4.
Mol Cell ; 78(4): 670-682.e8, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32343944

RESUMEN

Biomolecular condensates play a key role in organizing RNAs and proteins into membraneless organelles. Bacterial RNP-bodies (BR-bodies) are a biomolecular condensate containing the RNA degradosome mRNA decay machinery, but the biochemical function of such organization remains poorly defined. Here, we define the RNA substrates of BR-bodies through enrichment of the bodies followed by RNA sequencing (RNA-seq). We find that long, poorly translated mRNAs, small RNAs, and antisense RNAs are the main substrates, while rRNA, tRNA, and other conserved non-coding RNAs (ncRNAs) are excluded from these bodies. BR-bodies stimulate the mRNA decay rate of enriched mRNAs, helping to reshape the cellular mRNA pool. We also observe that BR-body formation promotes complete mRNA decay, avoiding the buildup of toxic endo-cleaved mRNA decay intermediates. The combined selective permeability of BR-bodies for both enzymes and substrates together with the stimulation of the sub-steps of mRNA decay provide an effective organization strategy for bacterial mRNA decay.


Asunto(s)
Caulobacter crescentus/metabolismo , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , Complejos Multienzimáticos/metabolismo , Orgánulos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/crecimiento & desarrollo , Endorribonucleasas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Humanos , Complejos Multienzimáticos/genética , Orgánulos/genética , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Helicasas/genética , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Mensajero/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA