Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 278
1.
Eur Radiol Exp ; 8(1): 58, 2024 May 13.
Article En | MEDLINE | ID: mdl-38735899

BACKGROUND: Chondrosarcomas are rare malignant bone tumors diagnosed by analyzing radiological images and histology of tissue biopsies and evaluating features such as matrix calcification, cortical destruction, trabecular penetration, and tumor cell entrapment. METHODS: We retrospectively analyzed 16 cartilaginous tumor tissue samples from three patients (51-, 54-, and 70-year-old) diagnosed with a dedifferentiated chondrosarcoma at the femur, a moderately differentiated chondrosarcoma in the pelvis, and a predominantly moderately differentiated chondrosarcoma at the scapula, respectively. We combined a hematein-based x-ray staining with high-resolution three-dimensional (3D) microscopic x-ray computed tomography (micro-CT) for nondestructive 3D tumor assessment and tumor margin evaluation. RESULTS: We detected trabecular entrapment on 3D micro-CT images and followed bone destruction throughout the volume. In addition to staining cell nuclei, hematein-based staining also improved the visualization of the tumor matrix, allowing for the distinction between the tumor and the bone marrow cavity. The hematein-based staining did not interfere with further conventional histology. There was a 5.97 ± 7.17% difference between the relative tumor area measured using micro-CT and histopathology (p = 0.806) (Pearson correlation coefficient r = 0.92, p = 0.009). Signal intensity in the tumor matrix (4.85 ± 2.94) was significantly higher in the stained samples compared to the unstained counterparts (1.92 ± 0.11, p = 0.002). CONCLUSIONS: Using nondestructive 3D micro-CT, the simultaneous visualization of radiological and histopathological features is feasible. RELEVANCE STATEMENT: 3D micro-CT data supports modern radiological and histopathological investigations of human bone tumor specimens. It has the potential for being an integrative part of clinical preoperative diagnostics. KEY POINTS: • Matrix calcifications are a relevant diagnostic feature of bone tumors. • Micro-CT detects all clinically diagnostic relevant features of x-ray-stained chondrosarcoma. • Micro-CT has the potential to be an integrative part of clinical diagnostics.


Bone Neoplasms , Chondrosarcoma , Feasibility Studies , Imaging, Three-Dimensional , X-Ray Microtomography , Humans , Chondrosarcoma/diagnostic imaging , Chondrosarcoma/pathology , X-Ray Microtomography/methods , Aged , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/pathology , Middle Aged , Retrospective Studies , Imaging, Three-Dimensional/methods , Male , Female , Staining and Labeling/methods
2.
Radiol Artif Intell ; : e230275, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717293

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To explore the potential benefits of deep learning-based artifact reduction in sparse-view cranial CT scans and its impact on automated hemorrhage detection. Materials and Methods In this retrospective study, a U-Net was trained for artifact reduction on simulated sparseview cranial CT scans from 3000 patients obtained from a public dataset and reconstructed with varying sparse-view levels. Additionally, the EfficientNetB2 was trained on full-view CT data from 17,545 patients for automated hemorrhage detection. Detection performance was evaluated using the area under the receiver operator characteristic curve (AUC), with differences assessed using the DeLong test, along with confusion matrices. A total variation (TV) postprocessing approach, commonly applied to sparse-view, served as the basis for comparison. A Bonferronicorrected significance level of 0.001/6 = 0.00017 was used to accommodate for multiple hypotheses testing. Results Images with U-Net postprocessing were better than unprocessed and TV-processed images with respect to image quality and automated hemorrhage detection. With U-Net postprocessing, the number of views could be reduced from 4096 (AUC: 0.97; 95% CI: 0.97-0.98) to 512 (0.97; 0.97-0.98; P < .00017) and to 256 views (0.97; 0.96-0.97; P < .00017) with minimal decrease in hemorrhage detection performance. This was accompanied by mean structural similarity index measure increases of 0.0210 (95% CI: 0.0210-0.0211) and 0.0560 (95% CI: 0.0559-0.0560) relative to unprocessed images. Conclusion U-Net based artifact reduction substantially enhances automated hemorrhage detection in sparse-view cranial CTs. ©RSNA, 2024.

3.
Eur Radiol Exp ; 8(1): 54, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698099

BACKGROUND: We aimed to improve the image quality (IQ) of sparse-view computed tomography (CT) images using a U-Net for lung metastasis detection and determine the best tradeoff between number of views, IQ, and diagnostic confidence. METHODS: CT images from 41 subjects aged 62.8 ± 10.6 years (mean ± standard deviation, 23 men), 34 with lung metastasis, 7 healthy, were retrospectively selected (2016-2018) and forward projected onto 2,048-view sinograms. Six corresponding sparse-view CT data subsets at varying levels of undersampling were reconstructed from sinograms using filtered backprojection with 16, 32, 64, 128, 256, and 512 views. A dual-frame U-Net was trained and evaluated for each subsampling level on 8,658 images from 22 diseased subjects. A representative image per scan was selected from 19 subjects (12 diseased, 7 healthy) for a single-blinded multireader study. These slices, for all levels of subsampling, with and without U-Net postprocessing, were presented to three readers. IQ and diagnostic confidence were ranked using predefined scales. Subjective nodule segmentation was evaluated using sensitivity and Dice similarity coefficient (DSC); clustered Wilcoxon signed-rank test was used. RESULTS: The 64-projection sparse-view images resulted in 0.89 sensitivity and 0.81 DSC, while their counterparts, postprocessed with the U-Net, had improved metrics (0.94 sensitivity and 0.85 DSC) (p = 0.400). Fewer views led to insufficient IQ for diagnosis. For increased views, no substantial discrepancies were noted between sparse-view and postprocessed images. CONCLUSIONS: Projection views can be reduced from 2,048 to 64 while maintaining IQ and the confidence of the radiologists on a satisfactory level. RELEVANCE STATEMENT: Our reader study demonstrates the benefit of U-Net postprocessing for regular CT screenings of patients with lung metastasis to increase the IQ and diagnostic confidence while reducing the dose. KEY POINTS: • Sparse-projection-view streak artifacts reduce the quality and usability of sparse-view CT images. • U-Net-based postprocessing removes sparse-view artifacts while maintaining diagnostically accurate IQ. • Postprocessed sparse-view CTs drastically increase radiologists' confidence in diagnosing lung metastasis.


Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Male , Middle Aged , Tomography, X-Ray Computed/methods , Female , Retrospective Studies , Radiographic Image Interpretation, Computer-Assisted/methods , Aged
4.
IEEE Trans Med Imaging ; PP2024 May 13.
Article En | MEDLINE | ID: mdl-38739509

X-ray computed tomography (CT) is a crucial tool for non-invasive medical diagnosis that uses differences in materials' attenuation coefficients to generate contrast and provide 3D information. Grating-based dark-field-contrast X-ray imaging is an innovative technique that utilizes small-angle scattering to generate additional co-registered images with additional microstructural information. While it is already possible to perform human chest dark-field radiography, it is assumed that its diagnostic value increases when performed in a tomographic setup. However, the susceptibility of Talbot-Lau interferometers to mechanical vibrations coupled with a need to minimize data acquisition times has hindered its application in clinical routines and the combination of X-ray dark-field imaging and large field-of-view (FOV) tomography in the past. In this work, we propose a processing pipeline to address this issue in a human-sized clinical dark-field CT prototype. We present the corrective measures that are applied in the employed processing and reconstruction algorithms to mitigate the effects of vibrations and deformations of the interferometer gratings. This is achieved by identifying spatially and temporally variable vibrations in air reference scans. By translating the found correlations to the sample scan, we can identify and mitigate relevant fluctuation modes for scans with arbitrary sample sizes. This approach effectively eliminates the requirement for sample-free detector area, while still distinctly separating fluctuation and sample information. As a result, samples of arbitrary dimensions can be reconstructed without being affected by vibration artifacts. To demonstrate the viability of the technique for human-scale objects, we present reconstructions of an anthropomorphic thorax phantom.

5.
Z Med Phys ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38631968

X-ray diffraction (XRD) is an important material analysis technique with a widespread use of laboratory systems. These systems typically operate at low X-ray energies (from 5 keV to 22 keV) since they rely on the small bandwidth of K-lines like copper. The narrow bandwidth is essential for precise measurements of the crystal structure in these systems. Inverse Compton X-ray source (ICS) could pave the way to XRD at high X-ray energies in a laboratory setting since these sources provide brilliant energy-tunable and partially coherent X-rays. This study demonstrates high-energy XRD at an ICS with strongly absorbing mineralogical samples embedded in soft tissue. A quantitative comparison of the measured XRD patterns with calculations of their expected shapes validates the performance of ICSs for XRD. This analysis was performed for two types of kidney stones of different materials. Since these stones are not isolated in a human body, the influence of the surrounding soft tissue on the XRD pattern is investigated and a correction for this soft tissue contribution is introduced.

6.
Eur Radiol Exp ; 8(1): 52, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38575701

BACKGROUND: Nowadays, there is no method to quantitatively characterize the material composition of acute ischemic stroke thrombi prior to intervention, but dual-energy CT (DE-CT) offers imaging-based multimaterial decomposition. We retrospectively investigated the material composition of thrombi ex vivo using DE-CT with histological analysis as a reference. METHODS: Clots of 70 patients with acute ischemic stroke were extracted by mechanical thrombectomy and scanned ex vivo in formalin-filled tubes with DE-CT. Multimaterial decomposition in the three components, i.e., red blood cells (RBC), white blood cells (WBC), and fibrin/platelets (F/P), was performed and compared to histology (hematoxylin/eosin staining) as reference. Attenuation and effective Z values were assessed, and histological composition was compared to stroke etiology according to the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria. RESULTS: Histological and imaging analysis showed the following correlation coefficients for RBC (r = 0.527, p < 0.001), WBC (r = 0.305, p = 0.020), and F/P (r = 0.525, p < 0.001). RBC-rich thrombi presented higher clot attenuation in Hounsfield units than F/P-rich thrombi (51 HU versus 42 HU, p < 0.01). In histological analysis, cardioembolic clots showed less RBC (40% versus 56%, p = 0.053) and more F/P (53% versus 36%, p = 0.024), similar to cryptogenic clots containing less RBC (34% versus 56%, p = 0.006) and more F/P (58% versus 36%, p = 0.003) than non-cardioembolic strokes. No difference was assessed for the mean WBC portions in all TOAST groups. CONCLUSIONS: DE-CT has the potential to quantitatively characterize the material composition of ischemic stroke thrombi. RELEVANCE STATEMENT: Using DE-CT, the composition of ischemic stroke thrombi can be determined. Knowledge of histological composition prior to intervention offers the opportunity to define personalized treatment strategies for each patient to accomplish faster recanalization and better clinical outcomes. KEY POINTS: • Acute ischemic stroke clots present different recanalization success according to histological composition. • Currently, no method can determine clot composition prior to intervention. • DE-CT allows quantitative material decomposition of thrombi ex vivo in red blood cells, white blood cells, and fibrin/platelets. • Histological clot composition differs between stroke etiology. • Insights into the histological composition in situ offer personalized treatment strategies.


Ischemic Stroke , Stroke , Thrombosis , Humans , Retrospective Studies , Thrombosis/diagnostic imaging , Thrombosis/pathology , Thrombosis/therapy , Stroke/diagnostic imaging , Stroke/pathology , Stroke/therapy , Fibrin/analysis , Tomography, X-Ray Computed/methods
7.
IEEE Trans Med Imaging ; PP2024 Mar 07.
Article En | MEDLINE | ID: mdl-38451749

Dark-field radiography, a new X-ray imaging method, has recently been applied to human chest imaging for the first time. It employs conventional X-ray devices in combination with a Talbot-Lau interferometer with a large field of view, providing both attenuation and dark-field radiographs. It is well known that sample scatter creates artifacts in both modalities. Here, we demonstrate that also X-ray scatter generated by the interferometer as well as detector crosstalk create artifacts in the dark-field radiographs, in addition to the expected loss of spatial resolution. We propose deconvolution-based correction methods for the induced artifacts. The kernel for detector crosstalk is measured and fitted to a model, while the kernel for scatter from the analyzer grating is calculated by a Monte-Carlo simulation. To correct for scatter from the sample, we adapt an algorithm used for scatter correction in conventional radiography. We validate the obtained corrections with a water phantom. Finally, we show the impact of detector crosstalk, scatter from the analyzer grating and scatter from the sample and their successful correction on dark-field images of a human thorax.

8.
J Imaging Inform Med ; 37(2): 892-898, 2024 Apr.
Article En | MEDLINE | ID: mdl-38343244

Modern photon counting detectors allow the calculation of virtual monoenergetic or material decomposed X-ray images but are not yet used for dental panoramic radiography systems. To assess the diagnostic potential and image quality of photon counting detectors in dental panoramic radiography, ethics approval from the local ethics committee was obtained for this retrospective study. Conventional CT scans of the head and neck region were segmented into bone and soft tissue. The resulting datasets were used to calculate panoramic equivalent thickness bone and soft tissue images by forward projection, using a geometry like that of conventional panoramic radiographic systems. The panoramic equivalent thickness images were utilized to generate synthetic conventional panoramic radiographs and panoramic virtual monoenergetic radiographs at various energies. The conventional, two virtual monoenergetic images at 40 keV and 60 keV, and material-separated bone and soft tissue panoramic equivalent thickness X-ray images simulated from 17 head CTs were evaluated in a reader study involving three experienced radiologists regarding their diagnostic value and image quality. Compared to conventional panoramic radiographs, the material-separated bone panoramic equivalent thickness image exhibits a higher image quality and diagnostic value in assessing the bone structure p < . 001 and details such as teeth or root canals p < . 001 . Panoramic virtual monoenergetic radiographs do not show a significant advantage over conventional panoramic radiographs. The conducted reader study shows the potential of spectral X-ray imaging for dental panoramic imaging to improve the diagnostic value and image quality.

9.
IEEE Trans Med Imaging ; 43(1): 28-38, 2024 Jan.
Article En | MEDLINE | ID: mdl-37342956

Grating-based X-ray phase-contrast and in particular dark-field radiography are promising new imaging modalities for medical applications. Currently, the potential advantage of dark-field imaging in early-stage diagnosis of pulmonary diseases in humans is being investigated. These studies make use of a comparatively large scanning interferometer at short acquisition times, which comes at the expense of a significantly reduced mechanical stability as compared to tabletop laboratory setups. Vibrations create random fluctuations of the grating alignment, causing artifacts in the resulting images. Here, we describe a novel maximum likelihood method for estimating this motion, thereby preventing these artifacts. It is tailored to scanning setups and does not require any sample-free areas. Unlike any previously described method, it accounts for motion in between as well as during exposures.

10.
IEEE Trans Med Imaging ; 43(4): 1422-1433, 2024 Apr.
Article En | MEDLINE | ID: mdl-38032773

X-ray dark-field imaging enables a spatially-resolved visualization of ultra-small-angle X-ray scattering. Using phantom measurements, we demonstrate that a material's effective dark-field signal may be reduced by modification of the visibility spectrum by other dark-field-active objects in the beam. This is the dark-field equivalent of conventional beam-hardening, and is distinct from related, known effects, where the dark-field signal is modified by attenuation or phase shifts. We present a theoretical model for this group of effects and verify it by comparison to the measurements. These findings have significant implications for the interpretation of dark-field signal strength in polychromatic measurements.


Models, Theoretical , Tomography, X-Ray Computed , X-Rays , Tomography, X-Ray Computed/methods , Radiography , Phantoms, Imaging
11.
Front Physiol ; 14: 1217007, 2023.
Article En | MEDLINE | ID: mdl-37534364

Background: Dark-field imaging is a novel imaging modality that allows for the assessment of material interfaces by exploiting the wave character of x-ray. While it has been extensively studied in chest imaging, only little is known about the modality for imaging other tissues. Therefore, the purpose of this study was to evaluate whether a clinical X-ray dark-field scanner prototype allows for the assessment of osteoporosis. Materials and methods: In this prospective study we examined human cadaveric lumbar spine specimens (vertebral segments L2 to L4). We used a clinical prototype for dark-field radiography that yields both attenuation and dark-field images. All specimens were scanned in lateral orientation in vertical and horizontal position. All specimens were additionally imaged with CT as reference. Bone mineral density (BMD) values were derived from asynchronously calibrated quantitative CT measurements. Correlations between attenuation signal, dark-field signal and BMD were assessed using Spearman's rank correlation coefficients. The capability of the dark-field signal for the detection of osteoporosis/osteopenia was evaluated with receiver operating characteristics (ROC) curve analysis. Results: A total of 58 vertebrae from 20 human cadaveric spine specimens (mean age, 73 years ±13 [standard deviation]; 11 women) were studied. The dark-field signal was positively correlated with the BMD, both in vertical (r = 0.56, p < .001) and horizontal position (r = 0.43, p < .001). Also, the dark-field signal ratio was positively correlated with BMD (r = 0.30, p = .02). No correlation was found between the signal ratio of attenuation signal and BMD (r = 0.14, p = .29). For the differentiation between specimens with and without osteoporosis/osteopenia, the area under the ROC curve (AUC) was 0.80 for the dark-field signal in vertical position. Conclusion: Dark-field imaging allows for the differentiation between spine specimens with and without osteoporosis/osteopenia and may therefore be a potential biomarker for bone stability.

12.
Eur Radiol Exp ; 7(1): 37, 2023 08 01.
Article En | MEDLINE | ID: mdl-37525062

BACKGROUND: To determine whether denoised areal bone mineral density (BMD) measurements from scout scans in spectral detector computed tomography (CT) correlate with volumetric trabecular BMD for opportunistic osteoporosis screening. METHODS: A 64-slice single-source dual-layer spectral CT scanner was used to acquire scout scan data of 228 lumbar vertebral bodies within 57 patients. Scout scans in anterior-posterior (AP) view were performed with a dose of < 0.06 mSv and spectrally decomposed into areal BMD (aBMD) values. A spectral dictionary denoising algorithm was applied to increase the signal-to-noise ratio (SNR). Volumetric trabecular bone mineral density (vBMD) was determined via material decomposition. A 3D convolutional network for image segmentation and labeling was applied for automated vBMD quantification. Projected maps were used to compare the classification accuracy of AP and lateral scout scans. RESULTS: The denoising algorithm led to the minimization of anticorrelated noise in spectral maps and an SNR increase from 5.23 to 13.4 (p < 0.002). Correlation analysis between vBMD and measured AP aBMD, projected AP, and lateral aBMD showed a Pearson correlation coefficient of 0.68, 0.81, and 0.90, respectively. The sensitivity and specificity for the osteoporosis classification task were higher in lateral projection images than in AP crystallizing in an increased area under the curve value of 0.99 versus 0.90. CONCLUSION: Denoised material-specific aBMD maps show a positive correlation to vBMD, enabling spectral scout scans as an opportunistic predictor for osteoporotic patients. This could be applied routinely as a screening tool in patients undergoing a CT examination. RELEVANCE STATEMENT: Scout-based DEXA could be applied routinely as a screening tool in patients undergoing a CT examination. KEY POINTS: • Spectral scout scans can be used as a dual-energy x-ray absorptiometry-like screening tool. • Spectral dictionary denoising on projection images increases the signal-to-noise ratio. • Positive correlation between volumetric and areal bone mineral density is observed. • Lateral projections increase osteoporosis classification accuracy compared to anterior-posterior projections.


Bone Density , Osteoporosis , Humans , Absorptiometry, Photon/methods , Osteoporosis/diagnostic imaging , Tomography, X-Ray Computed/methods , Lumbar Vertebrae/diagnostic imaging
13.
Invest Radiol ; 58(11): 775-781, 2023 11 01.
Article En | MEDLINE | ID: mdl-37276130

OBJECTIVES: Dark-field chest radiography (dfCXR) has recently reached clinical trials. Here we compare dfCXR to conventional radiography for the detection and staging of pulmonary emphysema. MATERIALS AND METHODS: Subjects were included after a medically indicated computed tomography (CT) scan, showing either no lung impairments or different stages of emphysema. To establish a ground truth, all CT scans were assessed by 3 radiologists assigning emphysema severity scores based on the Fleischner Society classification scheme.Participants were imaged at a commercial chest radiography device and at a prototype for dfCXR, yielding both attenuation-based and dark-field images. Three radiologists blinded to CT score independently assessed images from both devices for presence and severity of emphysema (no, mild, moderate, severe).Statistical analysis included evaluation of receiver operating characteristic curves and pairwise comparison of adjacent Fleischner groups using an area under the curve (AUC)-based z test with a significance level of 0.05. RESULTS: A total of 88 participants (54 men) with a mean age of 64 ± 12 years were included. Compared with conventional images (AUC = 0.73), readers were better able to identify emphysema with images from the dark-field prototype (AUC = 0.85, P = 0.005). Although ratings of adjacent emphysema severity groups with conventional radiographs differed only for trace and mild emphysema, ratings based on images from the dark-field prototype were different for trace and mild, mild and moderate, and moderate and confluent emphysema. CONCLUSIONS: Dark-field chest radiography is superior to conventional chest radiography for emphysema diagnosis and staging, indicating the technique's potential as a low-dose diagnostic tool for emphysema assessment.


Emphysema , Pulmonary Emphysema , Male , Humans , Middle Aged , Aged , Pulmonary Emphysema/diagnostic imaging , Radiography , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Radiography, Thoracic/methods
14.
Radiologie (Heidelb) ; 63(7): 513-522, 2023 Jul.
Article De | MEDLINE | ID: mdl-37341743

INTRODUCTION: The spatial and contrast resolution of conventional planar or computed tomographic X­ray techniques is not sufficient to investigate microstructures of tissues. Dark-field imaging with X­rays is an emerging technology that recently provided the first clinical results and makes diagnostic use of interactions of the beams with tissue due to their wave character. APPLICATION: Dark-field imaging can provide information about the microscopic structure or porosity of the tissue under investigation that is otherwise inaccessible. This makes it a valuable complement to conventional X­ray imaging, which can only account for attenuation. Our results demonstrate that X­ray dark-field imaging provides pictorial information about the underlying microstructure of the lung in humans. Given the close relationship between alveolar structure and the functional state of the lung, this is of great importance for diagnosis and therapy monitoring and may contribute to a better understanding of lung diseases in the future. In the early detection of chronic obstructive pulmonary disease, which is usually associated with structural impairment of the lung, this novel technique could help to facilitate its diagnosis. PERSPECTIVE: The application of dark-field imaging to computed tomography is still under development because it is technically difficult. Meanwhile, a prototype for experimental application has been developed and is currently being tested on a variety of materials. Use in humans is conceivable especially for tissues whose microstructure favors characteristic interactions due to the wave nature of the X­rays.


Lung Diseases , Tomography, X-Ray Computed , Humans , X-Rays , Radiography , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Lung Diseases/diagnostic imaging
15.
IEEE Trans Med Imaging ; 42(10): 2876-2885, 2023 10.
Article En | MEDLINE | ID: mdl-37115841

Grating-based phase- and dark-field-contrast X-ray imaging is a novel technology that aims to extend conventional attenuation-based X-ray imaging by unlocking two additional contrast modalities. The so called phase-contrast and dark-field channels provide enhanced soft tissue contrast and additional microstructural information. Accessing this additional information comes at the expense of a more intricate measurement setup and necessitates sophisticated data processing. A big challenge for translating grating-based dark-field computed tomography to medical applications lies in minimizing the data acquisition time. While a continuously moving detector is ideal, it prohibits conventional phase stepping techniques that require multiple projections under the same angle with different grating positions. One solution to this problem is the so-called sliding window processing approach that is compatible with continuous data acquisition. However, conventional sliding window techniques lead to crosstalk-artifacts between the three image channels, if the projection of the sample moves too fast on the detector within a processing window. In this work we introduce a new interpretation of the phase retrieval problem for continuous acquisitions as a demodulation problem. In this interpretation, we identify the origin of the crosstalk-artifacts as partially overlapping modulation side bands. Furthermore, we present three algorithmic extensions that improve the conventional sliding-window-based phase retrieval and mitigate crosstalk-artifacts. The presented algorithms are tested in a simulation study and on experimental data from a human-scale dark-field CT prototype. In both cases they achieve a substantial reduction of the occurring crosstalk-artifacts.


Algorithms , Tomography, X-Ray Computed , Humans , X-Rays , Tomography, X-Ray Computed/methods , Radiography , Computer Simulation , Phantoms, Imaging
16.
PLoS One ; 18(4): e0279323, 2023.
Article En | MEDLINE | ID: mdl-37058505

BACKGROUND: The differentiation of minimal-fat-or low-fat-angiomyolipomas from other renal lesions is clinically challenging in conventional computed tomography. In this work, we have assessed the potential of grating-based x-ray phase-contrast computed tomography (GBPC-CT) for visualization and quantitative differentiation of minimal-fat angiomyolipomas (mfAMLs) and oncocytomas from renal cell carcinomas (RCCs) on ex vivo renal samples. MATERIALS AND METHODS: Laboratory GBPC-CT was performed at 40 kVp on 28 ex vivo kidney specimens including five angiomyolipomas with three minimal-fat (mfAMLs) and two high-fat (hfAMLs) subtypes as well as three oncocytomas and 20 RCCs with eight clear cell (ccRCCs), seven papillary (pRCCs) and five chromophobe RCC (chrRCC) subtypes. Quantitative values of conventional Hounsfield units (HU) and phase-contrast Hounsfield units (HUp) were determined and histogram analysis was performed on GBPC-CT and grating-based attenuation-contrast computed tomography (GBAC-CT) slices for each specimen. For comparison, the same specimens were imaged at a 3T magnetic resonance imaging (MRI) scanner. RESULTS: We have successfully matched GBPC-CT images with clinical MRI and histology, as GBPC-CT presented with increased soft tissue contrast compared to absorption-based images. GBPC-CT images revealed a qualitative and quantitative difference between mfAML samples (58±4 HUp) and oncocytomas (44±10 HUp, p = 0.057) and RCCs (ccRCCs: 40±12 HUp, p = 0.012; pRCCs: 43±9 HUp, p = 0.017; chrRCCs: 40±7 HUp, p = 0.057) in contrast to corresponding laboratory attenuation-contrast CT and clinical MRI, although not all differences were statistically significant. Due to the heterogeneity and lower signal of oncocytomas, quantitative differentiation of the samples based on HUp or in combination with HUs was not possible. CONCLUSIONS: GBPC-CT allows quantitative differentiation of minimal-fat angiomyolipomas from pRCCs and ccRCCs in contrast to absorption-based imaging and clinical MRI.


Adenoma, Oxyphilic , Angiomyolipoma , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/pathology , Angiomyolipoma/diagnostic imaging , Angiomyolipoma/pathology , X-Rays , Tomography, X-Ray Computed/methods , Adenoma, Oxyphilic/diagnostic imaging , Diagnosis, Differential , Retrospective Studies
17.
Eur Radiol ; 33(8): 5549-5556, 2023 Aug.
Article En | MEDLINE | ID: mdl-36806571

OBJECTIVES: To compare the visibility of anatomical structures and overall quality of the attenuation images obtained with a dark-field X-ray radiography prototype with those from a commercial radiography system. METHODS: Each of the 65 patients recruited for this study obtained a thorax radiograph at the prototype and a reference radiograph at the commercial system. Five radiologists independently assessed the visibility of anatomical structures, the level of motion artifacts, and the overall image quality of all attenuation images on a five-point scale, with 5 points being the highest rating. The average scores were compared between the two image types. The differences were evaluated using an area under the curve (AUC) based z-test with a significance level of p ≤ 0.05. To assess the variability among the images, the distributions of the average scores per image were compared between the systems. RESULTS: The overall image quality was rated high for both devices, 4.2 for the prototype and 4.6 for the commercial system. The rating scores varied only slightly between both image types, especially for structures relevant to lung assessment, where the images from the commercial system were graded slightly higher. The differences were statistically significant for all criteria except for the bronchial structures, the cardiophrenic recess, and the carina. CONCLUSIONS: The attenuation images acquired with the prototype were assigned a high diagnostic quality despite a lower resolution and the presence of motion artifacts. Thus, the attenuation-based radiographs from the prototype can be used for diagnosis, eliminating the need for an additional conventional radiograph. KEY POINTS: • Despite a low tube voltage (70 kVp) and comparably long acquisition time, the attenuation images from the dark-field chest radiography system achieved diagnostic quality for lung assessment. • Commercial chest radiographs obtained a mean rating score regarding their diagnostic quality of 4.6 out of 5, and the grating-based images had a slightly lower mean rating score of 4.2 out of 5. • The difference in rating scores for anatomical structures relevant to lung assessment is below 5%.


Radiography, Thoracic , Thorax , Humans , X-Rays , Radiography, Thoracic/methods , Radiography , Lung/diagnostic imaging
19.
IEEE Trans Med Imaging ; 42(3): 774-784, 2023 03.
Article En | MEDLINE | ID: mdl-36301786

X-ray computed tomography (CT) is an invaluable imaging technique for non-invasive medical diagnosis. However, for soft tissue in the human body the difference in attenuation is inherently small. Grating-based X-ray phase-contrast is a relatively novel imaging method which detects additional interaction mechanisms between photons and matter, namely refraction and small-angle scattering, to generate additional images with different contrast. The experimental setup involves a Talbot-Lau interferometer whose susceptibility to mechanical vibrations hindered acquisition schemes suitable for clinical routine in the past. We present a processing pipeline to identify spatially and temporally variable fluctuations occurring in an interferometer installed on a continuously rotating clinical CT gantry. The correlations of the vibrations in the modular grating setup are exploited to identify a small number of relevant fluctuation modes, allowing for a sample reconstruction free of vibration artifacts.


Interferometry , Vibration , Humans , Interferometry/methods , Tomography, X-Ray Computed/methods , Radiography , X-Rays
20.
IEEE Trans Med Imaging ; 42(4): 1035-1045, 2023 04.
Article En | MEDLINE | ID: mdl-36395124

X-ray computed tomography (CT) is an important non-destructive imaging technique, particularly in clinical diagnostics. Even with the latest innovations like dual-energy and photon-counting CT, the image contrast is solely generated from attenuation in the tissue. An extension - fully compatible with these novelties - is dark-field CT, which retrieves an additional, so-called dark-field contrast. Unlike the attenuation channel, the dark-field channel is sensitive to tissue microstructure and porosity below the resolution of the imaging system, which allows additional insights into the health of the lung tissue or the structure of calcifications. The potential clinical value has been demonstrated in several preclinical studies and recently also in radiography patient studies. Just recently the first dark-field CT for the human body was established at the Technical University of Munich and in this paper, we discuss the performance of this prototype. We evaluate the interferometer components and the imposed challenges that the integration into the CT gantry brings by comparing the results to simulations and measurements at a laboratory setup. The influence of the clinical X-ray source on the Talbot-Lau interferometer and the impact of vibrations, which are immanent on the clinical CT gantry, are analyzed in detail to reveal their characteristic frequencies and origin. A beam hardening correction is introduced as an important step to adapt to the poly-chromatic spectrum and make quantitative dark-field imaging possible. We close with an analysis of the image resolution and the applied patient dose, and conclude that the performance is sufficient to suggest initial patient studies using the presented dark-field CT system.


Photons , Tomography, X-Ray Computed , Humans
...