Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
J Mol Cell Cardiol ; 188: 65-78, 2024 03.
Article En | MEDLINE | ID: mdl-38359551

Corepressors negatively regulate gene expression by chromatin compaction. Targeted regulation of gene expression could provide a means to control endothelial cell phenotype. We hypothesize that by targeting corepressor proteins, endothelial angiogenic function can be improved. To study this, the expression and function of nuclear corepressors in human umbilical vein endothelial cells (HUVEC) and in murine organ culture was studied. RNA-seq revealed that nuclear receptor corepressor 1 (NCoR1), silencing mediator of retinoid and thyroid hormone receptors (SMRT) and repressor element-1 silencing transcription factor (REST) are the highest expressed corepressors in HUVECs. Knockout and knockdown strategies demonstrated that the depletion of NCoR1 increased the angiogenic capacity of endothelial cells, whereas depletion of SMRT or REST did not. Interestingly, the effect was VEGF signaling independent. NCoR1 depletion significantly upregulated angiogenesis-associated genes, especially tip cell genes, including ESM1, DLL4 and NOTCH4, as observed by RNA- and ATAC-seq. Confrontation assays comparing cells with and without NCoR1-deficiency revealed that loss of NCoR1 promotes a tip-cell position during spheroid sprouting. Moreover, a proximity ligation assay identified NCoR1 as a direct binding partner of the Notch-signaling-related transcription factor RBPJk. Luciferase assays showed that siRNA-mediated knockdown of NCOR1 promotes RBPJk activity. Furthermore, NCoR1 depletion prompts upregulation of several elements in the Notch signaling cascade. Downregulation of NOTCH4, but not NOTCH1, prevented the positive effect of NCOR1 knockdown on spheroid outgrowth. Collectively, these data indicate that decreasing NCOR1 expression is an attractive approach to promote angiogenic function.


Cardiovascular Physiological Phenomena , Chromatin , Animals , Humans , Mice , Co-Repressor Proteins , Human Umbilical Vein Endothelial Cells , RNA, Small Interfering
2.
Front Physiol ; 14: 1125864, 2023.
Article En | MEDLINE | ID: mdl-36824462

Treatment of vascular stenosis with angioplasty results in acute vascular damage, which may lead to restenosis. Owing to the highly complex cellularity of blood vessels, the healing response following this damage is incompletely understood. To gain further insight into this process, scRNA-seq of mouse carotid tissue after wire injury was performed. Stages of acute inflammation, resolution and remodeling were recapitulated in these data. To identify cell types which give rise to neointima, analyses focused on smooth muscle cell and fibroblast populations, and included data integration with scRNA-seq data from myocardial infarction and atherosclerosis datasets. Following carotid injury, a subpopulation of smooth muscle cells which also arises during atherosclerosis and myocardial infarction was identified. So-called stem cell/endothelial cell/monocyte (SEM) cells are candidates for repopulating injured vessels, and were amongst the most proliferative cell clusters following wire-injury of the carotid artery. Importantly, SEM cells exhibit specific transcriptional profiles which could be therapeutically targeted. SEM cell gene expression patterns could also be detected in bulk RNA-sequencing of neointimal tissue isolated from injured carotid vessels by laser capture microdissection. These data indicate that phenotypic plasticity of smooth muscle cells is highly important to the progression of lumen loss following acute carotid injury. Interference with SEM cell formation could be an innovative approach to combat development of restenosis.

3.
Nat Commun ; 13(1): 6563, 2022 11 02.
Article En | MEDLINE | ID: mdl-36323673

DNA:DNA:RNA triplexes that are formed through Hoogsteen base-pairing of the RNA in the major groove of the DNA duplex have been observed in vitro, but the extent to which these interactions occur in cells and how they impact cellular functions remains elusive. Using a combination of bioinformatic techniques, RNA/DNA pulldown and biophysical studies, we set out to identify functionally important DNA:DNA:RNA triplex-forming long non-coding RNAs (lncRNA) in human endothelial cells. The lncRNA HIF1α-AS1 was retrieved as a top hit. Endogenous HIF1α-AS1 reduces the expression of numerous genes, including EPH Receptor A2 and Adrenomedullin through DNA:DNA:RNA triplex formation by acting as an adapter for the repressive human silencing hub complex (HUSH). Moreover, the oxygen-sensitive HIF1α-AS1 is down-regulated in pulmonary hypertension and loss-of-function approaches not only result in gene de-repression but also enhance angiogenic capacity. As exemplified here with HIF1α-AS1, DNA:DNA:RNA triplex formation is a functionally important mechanism of trans-acting gene expression control.


RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Endothelial Cells/metabolism , DNA/genetics , DNA/metabolism , Base Pairing , Oligonucleotides , Gene Expression Regulation, Neoplastic
4.
Mol Ther Nucleic Acids ; 27: 1023-1035, 2022 Mar 08.
Article En | MEDLINE | ID: mdl-35228897

The transcription factor hypoxia-inducible factor 1 (HIF1) is an important driver of cancer and is therefore an attractive drug target. Acriflavine (ACF) has been suggested to inhibit HIF1, but its mechanism of action is unknown. Here we investigated the interaction of ACF with DNA and long non-coding RNAs (lncRNAs) and its function in human endothelial cells. ACF promoted apoptosis and reduced proliferation, network formation, and angiogenic capacity. It also induced changes in gene expression, as determined by RNA sequencing (RNA-seq), which could not be attributed to specific inhibition of HIF1. A similar response was observed in murine lung endothelial cells. Although ACF increased and decreased a similar number of protein-coding genes, lncRNAs were preferentially upregulated under normoxic and hypoxic conditions. An assay for transposase accessibility with subsequent DNA sequencing (ATAC-seq) demonstrated that ACF induced strong changes in chromatin accessibility at lncRNA promoters. Immunofluorescence showed displacement of DNA:RNA hybrids. Such effects might be due to ACF-mediated topoisomerase inhibition, which was indeed the case, as reflected by DNA unwinding assays. Comparison with other acridine derivatives and topoisomerase inhibitors suggested that the specific function of ACF is an effect of acridinium-class compounds. This study demonstrates that ACF inhibits topoisomerases rather than HIF specifically and that it elicits a unique expression response of lncRNAs.

5.
Hypertension ; 79(6): 1216-1226, 2022 06.
Article En | MEDLINE | ID: mdl-35354305

BACKGROUND: POR (cytochrome P450 reductase) provides electrons for the catalytic activity of the CYP (cytochrome P450) monooxygenases. CYPs are dual-function enzymes as they generate protective vasoactive mediators derived from polyunsaturated fatty acids but also reactive oxygen species. It is not known in which conditions the endothelial POR/CYP system is beneficial versus deleterious. Here, the activity of all CYP enzymes was eliminated in the vascular endothelium to examine its impact on vascular function. METHODS: An endothelial-specific, tamoxifen-inducible POR knockout mouse (ecPOR-/-) was generated. Vascular function was studied by organ chamber experiments. eNOS (endothelial nitric oxide synthase) activity was accessed by heavy arginine/citrulline LC-MS/MS detection and phosphorylation of serine1177 in aortic rings. CYP-derived epoxyeicosatrienoic acids and prostanoids were measured by LC-MS/MS. Gene expression of aorta and endothelial cells was profiled by RNA sequencing. Blood pressure was measured by telemetry. RESULTS: Acetylcholine-induced endothelium-dependent relaxation was attenuated in isolated vessels of ecPOR-/- as compared with control mice. Additionally, ecPOR-/- mice had attenuated eNOS activity and eNOS/AKT phosphorylation. POR deletion reduced endothelial stores of CYP-derived epoxyeicosatrienoic acids but increased vascular prostanoids. This phenomenon was paralleled by the induction of genes implicated in eicosanoid generation. In response to Ang II (angiotensin II) infusion, blood pressure increased significantly more in ecPOR-/- mice. Importantly, the cyclooxygenase inhibitor Naproxen selectively lowered the Ang II-induced hypertension in ecPOR-/- mice. CONCLUSIONS: POR expression in endothelial cells maintains eNOS activity and its loss results in an overactivation of the vasoconstrictor prostanoid system. Through these mechanisms, loss of endothelial POR induces vascular dysfunction and hypertension.


Hypertension , NADPH-Ferrihemoprotein Reductase , Animals , Chromatography, Liquid , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Hypertension/chemically induced , Hypertension/metabolism , Mice , Mice, Knockout , NADPH-Ferrihemoprotein Reductase/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Prostaglandins/metabolism , Tandem Mass Spectrometry , Vasodilation
7.
Neurosurgery ; 88(3): 674-685, 2021 02 16.
Article En | MEDLINE | ID: mdl-33269399

BACKGROUND: Cerebral vasospasm (CVS) is a frequent complication after subarachnoid hemorrhage (SAH), with no sufficient therapy and a complex pathophysiology. OBJECTIVE: To explore the vitamin D system as a potential treatment for CVS. METHODS: 25-vitamin D3 levels tested between 2007 and 2015 and data of SAH patients admitted during the months with a peak vs nadir of VitD3 values were analyzed, retrospectively. We prospectively correlated VitD3 and vasospasm/outcome data in SAH patients admitted in 2017. An experimental mice SAH model and cell culture model were used to investigate the effect of 1,25-dihydroxyvitamin D3 (1,25-VitD3). Additionally, the mediators acting in the VitD mechanism were researched and detected. RESULTS: Based on the retrospective analysis demonstrating an increased frequency of vasospasm in SAH patients during the low vitamin D period in winter, we started basic research experiments. Active 1,25-VitD3 hormone attenuated CVS, neurological deficit, and inflammation after intrathecal blood injection in mice. Deletion of the vitamin D receptor in the endothelium or in myeloid cells decreased the protective 1,25-VitD3 effect. Co-culture experiments of myeloid and endothelial cells with blood confirmed the anti-inflammatory 1,25-VitD3 effect but also revealed an induction of stroma-cell-derived factor 1α (SDF1α), vascular endothelial growth factor, and endothelial nitric oxide synthase by 1,25-VitD3. In mice, SDF1α mimicked the protective effect of 1,25-VitD3 against CVS. From bench to bedside, CVS severity was inversely correlated with vitamin D plasma level, prospectively. Patients with more severe CVS exhibited attenuated expression of SDF1α and 1,25-VitD3-responsive genes on circulating myeloid cells. CONCLUSION: 1,25-VitD3 attenuates CVS after SAH by inducing SDF1α. However, VitD administration should be tested as optional treatment to prevent CVS.


Calcitriol/administration & dosage , Calcitriol/blood , Seasons , Vasospasm, Intracranial/blood , Vasospasm, Intracranial/drug therapy , Adult , Animals , Female , Follow-Up Studies , Humans , Male , Mice , Middle Aged , Retrospective Studies , Treatment Outcome , Vasospasm, Intracranial/diagnostic imaging , Vitamin D/administration & dosage , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/diagnostic imaging , Vitamin D Deficiency/drug therapy
8.
Sci Rep ; 10(1): 19079, 2020 11 05.
Article En | MEDLINE | ID: mdl-33154469

Zinc finger proteins (ZNF) are a large group of transcription factors with diverse functions. We recently discovered that endothelial cells harbour a specific mechanism to limit the action of ZNF354C, whose function in endothelial cells is unknown. Given that ZNF354C has so far only been studied in bone and tumour, its function was determined in endothelial cells. ZNF354C is expressed in vascular cells and localises to the nucleus and cytoplasm. Overexpression of ZNF354C in human endothelial cells results in a marked inhibition of endothelial sprouting. RNA-sequencing of human microvascular endothelial cells with and without overexpression of ZNF354C revealed that the protein is a potent transcriptional repressor. ZNF354C contains an active KRAB domain which mediates this suppression as shown by mutagenesis analysis. ZNF354C interacts with dsDNA, TRIM28 and histones, as observed by proximity ligation and immunoprecipitation. Moreover, chromatin immunoprecipitation revealed that the ZNF binds to specific endothelial-relevant target-gene promoters. ZNF354C suppresses these genes as shown by CRISPR/Cas knockout and RNAi. Inhibition of endothelial sprouting by ZNF354C is dependent on the amino acids DV and MLE of the KRAB domain. These results demonstrate that ZNF354C is a repressive transcription factor which acts through a KRAB domain to inhibit endothelial angiogenic sprouting.


Endothelial Cells/cytology , Endothelial Cells/metabolism , Neovascularization, Physiologic , Repressor Proteins/metabolism , Amino Acid Sequence , CRISPR-Cas Systems , Cells, Cultured , Gene Expression Profiling , Gene Knockout Techniques , Histones/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Mutagenesis, Site-Directed , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Neovascularization, Physiologic/genetics , Promoter Regions, Genetic , RNA, Small Interfering/genetics , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Tripartite Motif-Containing Protein 28/metabolism , Zinc Fingers/genetics
9.
Basic Res Cardiol ; 115(3): 34, 2020 04 22.
Article En | MEDLINE | ID: mdl-32323032

Endocannabinoids are important lipid-signaling mediators. Both protective and deleterious effects of endocannabinoids in the cardiovascular system have been reported but the mechanistic basis for these contradicting observations is unclear. We set out to identify anti-inflammatory mechanisms of endocannabinoids in the murine aorta and in human vascular smooth muscle cells (hVSMC). In response to combined stimulation with cytokines, IL-1ß and TNFα, the murine aorta released several endocannabinoids, with anandamide (AEA) levels being the most significantly increased. AEA pretreatment had profound effects on cytokine-induced gene expression in hVSMC and murine aorta. As revealed by RNA-Seq analysis, the induction of a subset of 21 inflammatory target genes, including the important cytokine CCL2 was blocked by AEA. This effect was not mediated through AEA-dependent interference of the AP-1 or NF-κB pathways but rather through an epigenetic mechanism. In the presence of AEA, ATAC-Seq analysis and chromatin-immunoprecipitations revealed that CCL2 induction was blocked due to increased levels of H3K27me3 and a decrease of H3K27ac leading to compacted chromatin structure in the CCL2 promoter. These effects were mediated by recruitment of HDAC4 and the nuclear corepressor NCoR1 to the CCL2 promoter. This study therefore establishes a novel anti-inflammatory mechanism for the endogenous endocannabinoid AEA in vascular smooth muscle cells. Furthermore, this work provides a link between endogenous endocannabinoid signaling and epigenetic regulation.


Arachidonic Acids/metabolism , Chemokine CCL2/biosynthesis , Endocannabinoids/metabolism , Muscle, Smooth, Vascular/metabolism , Polyunsaturated Alkamides/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Arachidonic Acids/pharmacology , Chemokine CCL2/drug effects , Endocannabinoids/pharmacology , Epigenesis, Genetic/drug effects , Humans , Mice , Muscle, Smooth, Vascular/drug effects , Polyunsaturated Alkamides/pharmacology , Signal Transduction/drug effects
10.
Eur Heart J ; 40(30): 2523-2533, 2019 08 07.
Article En | MEDLINE | ID: mdl-31222221

AIMS: To assess the functional relevance and therapeutic potential of the pro-angiogenic long non-coding RNA MANTIS in vascular disease development. METHODS AND RESULTS: RNA sequencing, CRISPR activation, overexpression, and RNAi demonstrated that MANTIS, especially its Alu-element, limits endothelial ICAM-1 expression in different types of endothelial cells. Loss of MANTIS increased endothelial monocyte adhesion in an ICAM-1-dependent manner. MANTIS reduced the binding of the SWI/SNF chromatin remodelling factor BRG1 at the ICAM-1 promoter. The expression of MANTIS was induced by laminar flow and HMG-CoA-reductase inhibitors (statins) through mechanisms involving epigenetic rearrangements and the transcription factors KLF2 and KLF4. Mutation of the KLF binding motifs in the MANTIS promoter blocked the flow-induced MANTIS expression. Importantly, the expression of MANTIS in human carotid artery endarterectomy material was lower compared with healthy vessels and this effect was prevented by statin therapy. Interestingly, the protective effects of statins were mediated in part through MANTIS, which was required to facilitate the atorvastatin-induced changes in endothelial gene expression. Moreover, the beneficial endothelial effects of statins in culture models (spheroid outgrowth, proliferation, telomerase activity, and vascular organ culture) were lost upon knockdown of MANTIS. CONCLUSION: MANTIS is tightly regulated by the transcription factors KLF2 and KLF4 and limits the ICAM-1 mediated monocyte adhesion to endothelial cells and thus potentially atherosclerosis development in humans. The beneficial effects of statin treatment and laminar flow are dependent on MANTIS.


Blood Flow Velocity/physiology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Kruppel-Like Transcription Factors/metabolism , RNA, Long Noncoding/metabolism , Angiogenesis Inducing Agents/metabolism , Carotid Stenosis/metabolism , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cells, Cultured , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Adhesion Molecule-1/metabolism , Kruppel-Like Factor 4
11.
Acta Physiol (Oxf) ; 225(1): e13168, 2019 01.
Article En | MEDLINE | ID: mdl-30076673

AIM: The histone demethylase Jarid1b limits gene expression by removing the active methyl mark from histone3 lysine4 at gene promoter regions. A vascular function of Jarid1b is unknown, but a vasoprotective function to inflammatory and hypertrophic stimuli, like angiotensin II (AngII) could be inferred. This hypothesis was tested using Jarid1b knockout mice and the inhibitor PBIT. METHODS: Mice or aortic segments were treated with AngII to induce endothelial dysfunction. Aortae from WT and Jarid1b knockout were studied in organ chambers and endothelium-dependent dilator responses to acetylcholine and endothelium-independent responses to DetaNONOate were recorded after pre-constriction with phenylephrine in the presence or absence of the NO-synthase inhibitor nitro-L-arginine. Molecular mechanisms were investigated with chromatin immunoprecipitation, RNA-Seq, RNA-3'-adaptor-ligation, actinomycin D and RNA-immunoprecipitation. RESULTS: Knockout or inhibition of Jarid1b prevented the development of endothelial dysfunction in response to AngII. This effect was not a consequence of altered nitrite oxide availability but accompanied by a loss of the inflammatory response to AngII. As Jarid1b mainly inhibits gene expression, an indirect effect should account for this observation. AngII induced the soluble epoxide hydrolase (sEH), which degrades anti-inflammatory lipids, and thus promotes inflammation. Knockout or inhibition of Jarid1b prevented the AngII-mediated sEH induction. Mechanistically, Jarid1b maintained the length of the 3'untranslated region of the sEH mRNA, thereby increasing its stability and thus sEH protein expression. Loss of Jarid1b activity therefore resulted in sEH mRNA destabilization. CONCLUSION: Jarid1b contributes to the pro-inflammatory effects of AngII by stabilizing sEH expression. Jarid1b inhibition might be an option for future therapeutics against cardiovascular dysfunction.


Angiotensin II/metabolism , DNA-Binding Proteins/metabolism , Endothelium, Vascular/metabolism , Epoxide Hydrolases/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , 3' Untranslated Regions , Acetylcholine/pharmacology , Animals , Aorta , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Endothelium, Vascular/pathology , Epoxide Hydrolases/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/genetics , Mice , Mice, Knockout , Nitroso Compounds/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
12.
Oncoimmunology ; 7(10): e1494110, 2018.
Article En | MEDLINE | ID: mdl-30288360

Macrophages in the tumor microenvironment respond to complex cytokine signals. How these responses shape the phenotype of tumor-associated macrophages (TAMs) is incompletely understood. Here we explored how cytokines of the tumor milieu, interleukin (IL)-6 and IL-4, interact to influence target gene expression in primary human monocyte-derived macrophages (hMDMs). We show that dual stimulation with IL-4 and IL-6 synergistically modified gene expression. Among the synergistically induced genes are several targets with known pro-tumorigenic properties, such as CC-chemokine ligand 18 (CCL18), transforming growth factor alpha (TGFA) or CD274 (programmed cell death 1 ligand 1 (PD-L1)). We found that transcription factors of the signal transducer and activator of transcription (STAT) family, STAT3 and STAT6 bind regulatory regions of synergistically induced genes in close vicinity. STAT3 and STAT6 co-binding further induces the basic leucine zipper ATF-like transcription factor (BATF), which participates in synergistic induction of target gene expression. Functional analyses revealed increased MCF-7 and MDA-MB 231 tumor cell motility in response to conditioned media from co-treated hMDMs compared to cells incubated with media from single cytokine-treated hMDMs. Flow cytometric analysis of T cell populations upon co-culture with hMDMs polarized by different cytokines indicated that dual stimulation promoted immunosuppressive properties of hMDMs in a PD-L1-dependent manner. Analysis of clinical data revealed increased expression of BATF together with TAM markers in tumor stroma of breast cancer patients as compared to normal breast tissue stroma. Collectively, our findings suggest that IL-4 and IL-6 cooperate to alter the human macrophage transcriptome, endowing hMDMs with pro-tumorigenic properties.

...