Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Molecules ; 26(16)2021 Aug 16.
Article En | MEDLINE | ID: mdl-34443546

Recent studies found that short-chain fatty acids (SCFAs), which are produced through bacterial fermentation in the gastrointestinal tract, have oncoprotective effects against cervical cancer. The most common SCFAs that are well known include acetic acid, butyric acid, and propionic acid, among which propionic acid (PA) has been reported to induce apoptosis in HeLa cells. However, the mechanism in which SCFAs suppress HeLa cell viability remain poorly understood. Our study aims to provide a more detailed look into the mechanism of PA in HeLa cells. Flow cytometry analysis revealed that PA induces reactive oxygen species (ROS), leading to the dysfunction of the mitochondrial membrane. Moreover, PA inhibits NF-κB and AKT/mTOR signaling pathways and induces LC3B protein levels, resulting in autophagy. PA also increased the sub-G1 cell population that is characteristic of cell death. Therefore, the results of this study propose that PA inhibits HeLa cell viability through a mechanism mediated by the induction of autophagy. The study also suggests a new approach for cervical cancer therapeutics.


Antineoplastic Agents/pharmacology , Propionates/pharmacology , Uterine Cervical Neoplasms/pathology , Antineoplastic Agents/chemistry , Autophagy/drug effects , Cell Cycle/drug effects , Cell Death/drug effects , Female , HeLa Cells , Humans , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , NF-kappa B/metabolism , Propionates/chemistry , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Uterine Cervical Neoplasms/metabolism
2.
J Microbiol Biotechnol ; 31(2): 217-225, 2021 Feb 28.
Article En | MEDLINE | ID: mdl-33397834

This study aimed to investigate the neuroprotective effects of 1-methoxylespeflorin G11 (MLG), a pterocarpan, against glutamate-induced neurotoxicity in neuronal HT22 hippocampal cells. The protective effects of MLG were evaluated using MTT assay and microscopic analysis. The extent of apoptosis was studied using flow cytometric analysis performed on the damaged cells probed with annexin V/propidium iodide. Moreover, mitochondrial reactive oxygen species (ROS) were assessed using flow cytometry through MitoSOXTM Red staining. To determine mitochondrial membrane potential, staining with tetramethylrhodamine and JC-1 was performed followed by flow cytometry. The results demonstrated that MLG attenuates glutamate-induced apoptosis in HT22 cells by inhibiting intracellular ROS generation and mitochondrial dysfunction. Additionally, MLG prevented glutamate-induced apoptotic pathway in HT22 cells through upregulation of Bcl-2 and downregulation of cleaved PARP-1, AIF, and phosphorylated MAPK cascades. In addition, MLG treatment induced HO-1 expression in HT22 cells. These results suggested that MLG exhibits neuroprotective effects against glutamate-induced neurotoxicity in neuronal HT22 cells by inhibiting oxidative stress and apoptosis.


Apoptosis/drug effects , Cell Death/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Pterocarpans/pharmacology , Animals , Cell Line , Glutamic Acid/toxicity , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/cytology , Neurons/metabolism , Oxidative Stress/drug effects , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Reactive Oxygen Species/metabolism
3.
Vaccine ; 38(52): 8273-8285, 2020 12 14.
Article En | MEDLINE | ID: mdl-33223308

Development of multivalent hand, foot, and mouth disease (HFMD) vaccines against enterovirus A71 (EV-A71) and several non-EV-A71 enteroviruses is needed for this life-threatening disease with a huge economic burden in Asia-Pacific countries. Comprehensive studies on the molecular epidemiology and genetic and antigenic characterization of major causative enteroviruses will provide information for rational vaccine design. Compared with molecular studies on EV-A71, that for non-EV-A71 enteroviruses remain few and limited in Vietnam. Therefore, we conducted a 10-year study on the circulation and genetic characterization of coxsackievirus A16 (CV-A16) and CV-A6 isolated from patients with HFMD in Northern Vietnam between 2008 and 2017. Enteroviruses were detected in 2228 of 3212 enrolled patients. Of the 42 serotypes assigned, 28.4% and 22.4% accounted for CV-A6 and CV-A16, being the second and the third dominant serotypes after EV-A71 (31.7%), respectively. The circulation of CV-A16 and CV-A6 showed a wide geographic distribution and distinct periodicity. Phylogenetic analyses revealed that the majority of Vietnamese CV-A6 and CV-A16 strains were located within the largest sub-genotypes or sub-genogroups. These comprised strains isolated from patients with HFMD worldwide during the past decade and the Vietnamese strains have been evolving in a manner similar to the strains circulating worldwide. Amino acid sequences of the putative functional loops on VP1 and other VPs among Vietnamese CV-A6 and CV-A16 isolates were highly conserved. Moreover, the functional loop patterns of VP1 were similar to the dominant patterns found worldwide, except for the T164K substitution on the EF loop in Vietnamese CV-A16. The findings suggest that the development of a universal HFMD vaccine, at least in Vietnam, must target CV-A6 and CV-A16 as two of the three major HFMD-causing serotypes. Vietnamese isolates or their genome sequences can be considered for rational vaccine design.


Enterovirus A, Human , Enterovirus , Hand, Foot and Mouth Disease , Asia , China , Enterovirus/genetics , Enterovirus A, Human/genetics , Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/prevention & control , Humans , Phylogeny , Vietnam/epidemiology
4.
Molecules ; 25(17)2020 Aug 26.
Article En | MEDLINE | ID: mdl-32858952

A potential natural melanogenesis inhibitor was discovered in the form of a sesquiterpene isolated from the flowers of Inula britannica, specifically 6-O-isobutyrylbritannilactone (IBL). We evaluated the antimelanogenesis effects of IBL on B16F10 melanocytes and zebrafish embryos. As a result, we found that 3-isobutyl-1-methylxanthine (IBMX)-induced melanin production was reduced in a dose-dependent manner in B16F10 cells by IBL. We also analyzed B16F10 cells that were and were not treated with IBMX, investigating the melanin concentration, tyrosinase activity, mRNA levels. We also studied the protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related proteins (TRP1, and TRP2). Furthermore, we found that melanin synthesis and tyrosinase expression were also inhibited by IBL through the modulation of the following signaling pathways: ERK, phosphoinositide 3-kinase (PI3K)/AKT, and CREB. In addition, we studied antimelanogenic activity using zebrafish embryos and found that the embryos had significantly reduced pigmentation in the IBL-treated specimens compared to the untreated controls.


Inula/chemistry , Lactones , Melanocytes/metabolism , Signal Transduction/drug effects , Skin Pigmentation/drug effects , Zebrafish/embryology , Animals , Cell Line, Tumor , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental/drug effects , Humans , Lactones/chemistry , Lactones/pharmacology , Zebrafish Proteins/biosynthesis
5.
J Microbiol Biotechnol ; 30(8): 1214-1221, 2020 Aug 28.
Article En | MEDLINE | ID: mdl-32699201

Esculetin 6-O-ß-D-arabinofuranosyl-(1→6)-ß-D-glucopyranoside (EAG) is a coumarin glycoside isolated from the stem bark of Fraxinus rhynchophylla. This study scrutinized the anti-proliferative activity of EAG on blood cancer-derived Jurkat leukemic cells. Cell viability assays in leukemic cancer cells determined that EAG possesses potent anti-proliferative effects. Moreover, treatment with EAG increased the proportion of apoptotic cells, resulted in cell cycle arrest being induced at the subG0/ G1 phase, and reduced the proportion of cells present in the S phase. In addition, mitochondrial membrane potential was reduced by EAG in Jurkat cells. Additionally, EAG triggered apoptosis that was mediated by the downregulation of BCL-XL, p-IκBα, and p-p65 expressions in addition to the upregulation of cleaved Caspase 3 and BAX expressions. These findings revealed that the toxic effect of EAG was mediated by intracellular signal transduction pathways that involved a mechanism in which reactive oxygen species (ROS) were upregulated. Thus, this study concludes that EAG could potentially serve as a therapeutic agent for leukemia.


Apoptosis/drug effects , Cell Proliferation/drug effects , Coumarins/pharmacology , Fraxinus/chemistry , Plant Bark/chemistry , Plant Extracts/pharmacology , Caspase 3/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Coumarins/chemistry , Humans , Jurkat Cells , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Umbelliferones/pharmacology
6.
J Virol ; 94(12)2020 06 01.
Article En | MEDLINE | ID: mdl-32295903

Cell entry by HIV-1 is mediated by its principal receptor, CD4, and a coreceptor, either CCR5 or CXCR4, with viral envelope glycoprotein gp120. Generally, CCR5-using HIV-1 variants, called R5, predominate over most of the course of infection, while CXCR4-using HIV-1 variants (variants that utilize both CCR5 and CXCR4 [R5X4, or dual] or CXCR4 alone [X4]) emerge at late-stage infection in half of HIV-1-infected individuals and are associated with disease progression. Although X4 variants also appear during acute-phase infection in some cases, these variants apparently fall to undetectable levels thereafter. In this study, replication-competent X4 variants were isolated from plasma of drug treatment-naive individuals infected with HIV-1 strain CRF01_AE, which dominantly carries viral RNA (vRNA) of R5 variants. Next-generation sequencing (NGS) confirmed that sequences of X4 variants were indeed present in plasma vRNA from these individuals as a minor population. On the other hand, in one individual with a mixed infection in which X4 variants were dominant, only R5 replication-competent variants were isolated from plasma. These results indicate the existence of replication-competent variants with different coreceptor usage as minor populations.IMPORTANCE The coreceptor switch of HIV-1 from R5 to CXCR4-using variants (R5X4 or X4) has been observed in about half of HIV-1-infected individuals at late-stage infection with loss of CD4 cell count and disease progression. However, the mechanisms that underlie the emergence of CXCR4-using variants at this stage are unclear. In the present study, CXCR4-using X4 variants were isolated from plasma samples of HIV-1-infected individuals that dominantly carried vRNA of R5 variants. The sequences of the X4 variants were detected as a minor population using next-generation sequencing. Taken together, CXCR4-using variants at late-stage infection are likely to emerge when replication-competent CXCR4-using variants are maintained as a minor population during the course of infection. The present study may support the hypothesis that R5-to-X4 switching is mediated by the expansion of preexisting X4 variants in some cases.


HIV Infections/immunology , HIV-1/genetics , Receptors, CCR5/genetics , Receptors, CXCR4/genetics , Receptors, HIV/immunology , Adult , Aged , Amino Acid Sequence , CD4 Lymphocyte Count , Coinfection , Disease Progression , Female , Gene Expression Regulation , HIV Infections/genetics , HIV Infections/virology , HIV-1/classification , HIV-1/immunology , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Male , Middle Aged , Phylogeny , Protein Binding , RNA, Viral/genetics , RNA, Viral/immunology , Receptors, CCR5/immunology , Receptors, CXCR4/immunology , Receptors, HIV/genetics , Viral Tropism/genetics , Viral Tropism/immunology , Virus Attachment , Virus Internalization
...