Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 45(5): e2300602, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38052160

RESUMEN

Enhancing the piezoresistivity of polymer-derived silicon oxycarbide ceramics (SiOCPDC ) is of great interest in the advancement of highly sensitive pressure/load sensor technology for use in harsh and extreme working conditions. However, a facile, low cost, and scalable approach to fabricate highly piezoresistive SiOCPDC below 1400 °C still remains a great challenge. Here, the fabrication and enhancement of piezoresistive properties of SiOCPDC reinforced with ß-SiC nanopowders (SiCNP ) through masked stereolithography-based 3D-printing and subsequent pyrolysis at 1100 °C are demonstrated. The presence of free carbon in SiCNP augments high piezoresistivity in the fabricated SiCNP -SiOCPDC composites even at lower pyrolysis temperatures. A gauge factor (GF) in the range of 4385-5630 and 6129-8987 with 0.25 and 0.50 wt% of SiCNP , respectively is demonstrated, for an applied pressure range of 0.5-5 MPa at ambient working conditions. The reported GF is significantly higher compared to those of any existing SiOCPDC materials. This rapid and facile fabrication route with significantly enhanced piezoresistive properties makes the 3D-printed SiCNP -SiOCPDC composite a promising high-performance material for the detection of pressure/load in demanding applications. Also, the overall robustness in mechanical properties and load-bearing capability ensures its long-term stability and makes it suitable for challenging and severe environment applications.


Asunto(s)
Compuestos Inorgánicos de Carbono , Impresión Tridimensional , Compuestos de Silicona , Estereolitografía , Cerámica , Polímeros
2.
ACS Sens ; 7(12): 3846-3856, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36507663

RESUMEN

Metal-organic frameworks (MOFs) present specific adsorption sites with varying electron affinity which are uniquely conducive to selective gas sensing but are typically large-band-gap insulators. On the contrary, multiwall carbon nanotubes (MWCNTs) exhibit superior mesoscopic transport exploiting strong electron correlations among sub-bands below and above the Fermi level at room temperature. We synergize them in a new class of nanocomposites based on zeolitic imidazolate framework-8 (ZIF-8) and report selective sensing of CH4 in ∼10 parts-per-billion (ppb) with a determined limit of detection of ∼0.22 ppb, hitherto unprecedented. The observed selectivity to CH4 over non-polar CO2, polar volatile organic compounds, and moisture has roots in competing electron-sharing mechanisms at its different adsorption sites. This important result provides a significant reference to guide future MOF-related composite research to achieve the best sensing performance. On molecular adsorption, MWCNTs facilitate electrical transport via manipulating the ZIF-8 band gap to show a p-type semiconductor behavior with lower activation energy to induce a measurable resistance change. Excellent repeatability and reversibility are shown. A carbon-engineered MOF composite has the potential to actuate similar selective response to low reactive gases via carrier manipulation in the energy band gap.

3.
Sci Rep ; 6: 32996, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27596851

RESUMEN

According to Stokes' law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

4.
Sci Rep ; 6: 23966, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27046089

RESUMEN

The infrared-active (IR) vibrational mode of ethanol (EtOH) associated with the asymmetrical stretching of the C-C-O bond in pico-liter volumes of EtOH-water binary mixtures is calorimetrically measured using photothermal microfluidic cantilever deflection spectroscopy (PMCDS). IR absorption by the confined liquid results in wavelength dependent cantilever deflections, thus providing a complementary response to IR absorption revealing a complex dipole moment dependence on mixture concentration. Solvent-induced blue shifts of the C-C-O asymmetric vibrational stretch for both anti and gauche conformers of EtOH were precisely monitored for EtOH concentrations ranging from 20-100% w/w. Variations in IR absorption peak maxima show an inverse dependence on induced EtOH dipole moment (µ) and is attributed to the complex clustering mechanism of EtOH-water mixtures.

5.
Nano Lett ; 15(8): 5658-63, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26217967

RESUMEN

Mid-infrared (IR) photothermal spectroscopy of adsorbed molecules is an ideal technique for molecular recognition in miniature sensors with very small thermal mass. Here, we report on combining the photothermal spectroscopy with electrical resonance of a semiconductor nanowire for enhanced sensitivity, selectivity, and simplified readout. Wide band gap semiconductor bismuth ferrite nanowire, by virtue of its very low thermal mass and abundance of surface states in the band gap, facilitates thermally induced charge carrier trapping in the surface states, which affects its electrical resonance response. Electrical resonance response of the nanowire varies significantly depending on the photothermal spectrum of the adsorbed molecules. We demonstrate highly selective detection of mid-IR photothermal spectral signatures of femtogram level molecules physisorbed on a nanowire by monitoring internal dissipation response at its electrical resonance.

6.
Rev Sci Instrum ; 83(9): 095003, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23020408

RESUMEN

Several research groups have attempted to optimize photopolymerization parameters to increase the throughput of scanning based microstereolithography (MSL) systems through modified beam scanning techniques. Efforts in reducing the curing line width have been implemented through high numerical aperture (NA) optical setups. However, the intensity contour symmetry and the depth of field of focus have led to grossly non-vertical and non-uniform curing profiles. This work tries to review the photopolymerization process in a scanning based MSL system from the aspect of material functionality and optical design. The focus has been to exploit the rich potential of photoreactor scanning system in achieving desired fabrication modalities (minimum curing width, uniform depth profile, and vertical curing profile) even with a reduced NA optical setup and a single movable stage. The present study tries to manipulate to its advantage the effect of optimized lower [c] (photoinitiator (PI) concentration) in reducing the minimum curing width to ~10-20 µm even with a higher spot size (~21.36 µm) through a judiciously chosen "monomer-PI" system. Optimization on grounds of increasing E(max) (maximum laser exposure energy at surface) by optimizing the scan rate provides enough time for the monomer or resin to get cured across the entire resist thickness (surface to substrate ~10-100 µm), leading to uniform depth profiles along the entire scan lengths.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA