Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37177006

RESUMEN

A series of ruthenium nanoparticles (RuNPs) were synthesized by the organometallic approach in different functionalized imidazolium ionic liquids (FILs). Transmission electron microscopy (TEM) showed well-dispersed and narrow-sized RuNPs ranging from 1.3 to 2.2 nm, depending on the IL functionalization. Thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) allowed the interaction between the RuNPs and the ILs to be studied. The RuNPs stabilized by methoxy-based FILs (MEM and MME) displayed a good balance between catalytic activity and stability when evaluated in the hydrogenation of styrene (S) under mild reaction conditions. Moreover, the catalysts showed total selectivity towards ethylbenzene (EB) under milder reaction conditions (5 bar, 30 °C) than reported in the literature for other RuNP catalysts.

2.
Sci Total Environ ; 868: 161547, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36642279

RESUMEN

Carbon dioxide (CO2) is the most important greenhouse gas (GHG), accounting for 76% of all GHG emissions. The atmospheric CO2 concentration has increased from 280 ppm in the pre-industrial era to about 418 ppm, and is projected to reach 570 ppm by the end of the 21st century. In addition to reducing CO2 emissions from anthropogenic activities, strategies to adequately address climate change must include CO2 capture. To promote circular economy, captured CO2 should be converted to value-added materials such as fuels and other chemical feedstock. Due to their tunable chemistry (which allows them to be selective) and high surface area (which allows them to be efficient), engineered nanomaterials are promising for CO2 capturing and/or transformation. This work critically reviewed the application of nanomaterials for the transformation of CO2 into various fuels, like formic acid, carbon monoxide, methanol, and ethanol. We discussed the literature on the use of metal-based nanomaterials, inorganic/organic nanocomposites, as well as other routes suitable for CO2 conversion such as the electrochemical, non-thermal plasma, and hydrogenation routes. The characteristics, steps, mechanisms, and challenges associated with the different transformation technologies were also discussed. Finally, we presented a section on the outlook of the field, which includes recommendations for how to continue to advance the use of nanotechnology for conversion of CO2 to fuels.

3.
Faraday Discuss ; 242(0): 353-373, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36193838

RESUMEN

The conversion of biomass as a sustainable path to access valuable chemicals and fuels is very attractive for the chemical industry, but catalytic conversions still often rely on the use of noble metals. Sustainability constraints require developing alternative catalysts from abundant and low-cost metals. In this context, NiFe nanoparticles are interesting candidates. In their reduced and supported form, they have been reported to be more active and selective than monometallic Ni in the hydrogenation of the polar functions of organic molecules, and the two metals are very abundant. However, unlike noble metals, Ni and Fe are easily oxidized in ambient conditions, and understanding their transformation in both oxidative and reductive atmospheres is an important though seldom investigated issue to be addressed before their application in catalysis. Three types of NiFe nanoparticles were prepared by an organometallic approach to ensure the formation of ultrasmall nanoparticles (<3.5 nm) with a narrow size distribution, controlled composition and chemical order, while working in mild conditions: Ni2Fe1 and Ni1Fe1, both with a Ni rich core and Fe rich surface, and an alloy with a Ni1Fe9 composition. Supported systems were obtained by the impregnation of silica with a colloidal solution of the preformed nanoparticles. Using advanced characterization techniques, such as wide-angle X-ray scattering (WAXS) and X-ray absorption spectroscopy (XAS) in in situ conditions, this study reports on the evolution of the chemical order and of the oxidation state of the metals upon exposure to air, hydrogen, and/or increasing temperature, all factors that may affect their degree of reduction and subsequent performance in catalysis. We show that if oxidation readily occurs upon exposure to air, the metals can revert to their initial state upon heating in the presence of H2 but with a change in structure and chemical ordering.

4.
Dalton Trans ; 51(30): 11457-11466, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35822914

RESUMEN

Production of hydrogen from a renewable source that is water requires the development of sustainable catalytic processes. This implies, among others, developing efficient catalytic materials from abundant and low-cost resources and investigating their performance, especially in the oxidation of water as this half-reaction is the bottleneck of the water splitting process. For this purpose, NiFe-based nanoparticles with sizes ca. 3-4 nm have been synthesized by an organometallic approach and characterized by complementary techniques (WAXS, TEM, STEM-HAADF, EDX, XPS, and ATR-FTIR). They display a Ni core and a mixed Ni-Fe oxide shell. Once deposited onto FTO electrodes, they have been assessed in the electrocatalytic oxygen evolution reaction under alkaline conditions. Three different Ni/Fe ratios (2/1, 1/1 and 1/9) have been studied in comparison with their monometallic counterparts. The Ni2Fe1 nanocatalyst displayed the lowest overpotential (320 mV at j = 10 mA cm-2) as well as excellent stability over 16 h.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35159673

RESUMEN

Exploiting biomass to synthesise compounds that may replace fossil-based ones is of high interest in order to reduce dependence on non-renewable resources. 1,2-pentanediol and 1,5-pentanediol can be produced from furfural, furfuryl alcohol or tetrahydrofurfuryl alcohol following a metal catalysed hydrogenation/C-O cleavage procedure. Colloidal ruthenium nanoparticles stabilized with polyvinylpyrrolidone in situ modified with different organic compounds are able to produce 1,2-pentanediol directly from furfural in a 36% of selectivity at 125 °C under 20 bar of H2 pressure.

6.
ACS Appl Mater Interfaces ; 13(45): 53829-53840, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34726907

RESUMEN

The present environmental crisis prompts the search for renewable energy sources such as solar-driven production of hydrogen from water. Herein, we report an efficient hybrid photocatalyst for water oxidation, consisting of a ruthenium polypyridyl complex covalently grafted on core/shell Fe@FeOx nanoparticles via a phosphonic acid group. The photoelectrochemical measurements were performed under 1 sun illumination in 1 M KOH. The photocurrent density of this hybrid photoanode reached 20 µA/cm2 (applied potential of +1.0 V vs reversible hydrogen electrode), corresponding to a turnover frequency of 0.02 s-1. This performance represents a 9-fold enhancement of that achieved with a mixture of Fe@FeOx nanoparticles and a linker-free ruthenium polypyridyl photosensitizer. This increase in performance could be attributed to a more efficient electron transfer between the ruthenium photosensitizer and the Fe@FeOx catalyst as a consequence of the covalent link between these two species through the phosphonate pendant group.

7.
Nanoscale ; 13(19): 8931-8939, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33956009

RESUMEN

Production of formate via CO2/bicarbonate hydrogenation using cheap metal-based heterogeneous catalysts is attractive. Herein, we report the organometallic synthesis of a foam-like Ni@Ni(OH)2 composite nanomaterial which exhibited remarkable air stability and over 2 times higher catalytic activity than commercial RANEY® Ni catalyst in formate synthesis. Formate generation was achieved with an optimal rate of 6.0 mmol gcat-1 h-1 at 100 °C, a significantly lower operation temperature compared to the 200-260 °C reported in the literature. Deep characterization evidenced that this nanomaterial was made of an amorphous Ni(OH)2 phase covering metallic Ni sites; a core-shell structure which is crucial for the stability of the catalyst. The adsorption of bicarbonates onto the Ni@Ni(OH)2 catalyst was found to be a kinetically relevant step in the reaction, and the Ni-Ni(OH)2 interface was found to be beneficial for both CO2 and H2 activation thanks to a cooperative effect. Our findings emphasize the underestimated potential of Ni-based catalysts in CO2 hydrogenation to formate, indicating a viable strategy to develop stable, cheap metal catalysts for greener catalytic applications.

8.
Nanoscale Adv ; 3(15): 4471-4481, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36133455

RESUMEN

To shed light on the factors governing the stability and surface properties of iron nanoparticles, a series of iron nanoparticles has been produced by hydrogenation of two different iron amido complexes: the bis[bis(trimethylsilyl)amido] Fe(ii), [Fe(N(SiMe3)2)2]2, and the bis(diphenylamido) Fe(ii), [Fe(NPh2)2]. Nanostructured materials of bcc structure, or nanoparticles displaying average sizes below 3 nm and a polytetrahedral structure, have been obtained. Depending on the synthesis conditions, the magnetization of the nanoparticles was either significantly lower than that of bulk iron, or much higher as for clusters elaborated under high vacuum conditions. Unexpectedly, hydrogenation of aromatic groups of the ligands of the [Fe(NPh2)2] precursor has been observed in some cases. Confrontation of the experimental results with DFT calculations made on polytetrahedral Fe91 model clusters bearing hydrides, amido and/or amine ligands at their surface, has shown that amido ligands can play a key role in the stabilisation of the nanoparticles in solution while the hydride surface coverage governs their surface magnetic properties. This study indicates that magnetic measurements give valuable indicators of the surface properties of iron nanoparticles in this size range, and beyond, of their potential reactivity.

9.
Nanoscale Adv ; 3(9): 2554-2566, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-36134168

RESUMEN

Rhodium nanoparticles (Rh NPs) embedded in different amphiphilic core-crosslinked micelle (CCM) latexes (RhNP@CCM) have been synthesized by [RhCl(COD)(TPP@CCM)] reduction with H2 (TPP@CCM = core-anchored triphenylphosphine). The reduction rate depends on temperature, on the presence of base (NEt3) and on the P/Rh ratio. For CCMs with outer shells made of neutral P(MAA-co-PEOMA) copolymer chains (RhNP@CCM-N), the core-generated Rh NPs tend to migrate toward the hydrophilic shell and to agglomerate depending on the P/Rh ratio and core TPP density, whereas the MAA protonation state has a negligible effect. Conversely, CCMs with outer shells made of polycationic P(4VPMe+I-) chains (RhNP@CCM-C) maintain core-confined and well dispersed Rh NPs. All RhNP@CCMs were used as catalytic nanoreactors under aqueous biphasic conditions for acetophenone, styrene and 1-octene hydrogenation. Styrene was efficiently hydrogenated by all systems with high selectivity for vinyl reduction. For acetophenone, competition between benzene ring and carbonyl reduction was observed as well as a limited access to the catalytic sites when using CCM-C. Neat 1-octene was also converted, but the activity increased when the substrate was diluted in 1-nonanol, which is a better core-swelling solvent. Whereas the molecular RhI center was more active than the Rh0 NPs in 1-octene hydrogenation, the opposite trend was observed for styrene hydrogenation. Although Rh NP migration and agglomeration occurred for RhNP@CCM-N, even at high P/Rh, the NPs remained core-confined for RhNP@CCM-C, but only when toluene rather than diethyl ether was used for product extraction before recycling.

10.
Dalton Trans ; 49(19): 6446-6456, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32355938

RESUMEN

The electrochemical reduction of organic contaminants allows their removal from water. In this contribution, the electrocatalytic hydrogenation of nitrobenzene is studied using both oxidized carbon fibres and ruthenium nanoparticles supported on unmodified carbon fibres as catalysts. The two systems produce azoxynitrobenzene as the main product, while aniline is only observed in minor quantities. Although PhNO2 hydrogenation is the favoured reaction, the hydrogen evolution reaction (HER) competes in both systems under catalytic conditions. H2 formation occurs in larger amounts when using the Ru nanoparticle based catalyst. While similar reaction outputs were observed for both catalytic systems, DFT calculations revealed some significant differences related to distinct interactions between the catalytic material and the organic substrates or products, which could pave the way for the design of new catalytic materials.

11.
Chem Commun (Camb) ; 56(29): 4059-4062, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32195508

RESUMEN

A hybrid material made of mononuclear organophosphorus polypyridyl ruthenium complexes covalently bonded to ruthenium nanoparticles has been synthesized via a one-pot organometallic procedure and finely characterized. These results open new avenues to access unique hybrid transition metal nanomaterials.

12.
Chem Rev ; 120(2): 1085-1145, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31898888

RESUMEN

This review provides a synthetic overview of the recent research advancements addressing the topic of catalysis with colloidal ruthenium metal nanoparticles through the last five years. The aim is to enlighten the interest of ruthenium metal at the nanoscale for a selection of catalytic reactions performed in solution condition. The recent progress in nanochemistry allowed providing well-controlled ruthenium nanoparticles which served as models and allowed study of how their characteristics influence their catalytic properties. Although this parameter is not enough often taken into consideration the surface chemistry of ruthenium nanoparticles starts to be better understood. This offers thus a strong basis to better apprehend catalytic processes on the metal surface and also explore how these can be affected by the stabilizing molecules as well as the ruthenium crystallographic structure. Ruthenium nanoparticles have been reported for their application as catalysts in solution for diverse reactions. The main ones are reduction, oxidation, Fischer-Tropsch, C-H activation, CO2 transformation, and hydrogen production through amine borane dehydrogenation or water-splitting reactions, which will be reviewed here. Results obtained showed that ruthenium nanoparticles can be highly performant in these reactions, but efforts are still required in order to be able to rationalize the results. Beside their catalytic performance, ruthenium nanocatalysts are very good models in order to investigate key parameters for a better controlled nanocatalysis. This is a challenging but fundamental task in order to develop more efficient catalytic systems, namely more active and more selective catalysts able to work in mild conditions.

13.
Nanoscale ; 11(19): 9392-9409, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31038521

RESUMEN

Given that the properties of metal nanoparticles (NPs) depend on several parameters (namely, morphology, size, surface composition, crystalline structure, etc.), a computational model that brings a better understanding of a structure-property relationship at the nanoscale is a significant plus in order to explain the surface properties of metal NPs and also their catalytic viability, in particular, when envisaging a new stabilizing agent. In this study we combined experimental and theoretical tools to obtain a mapping of the surface of ruthenium NPs stabilized by ethanoic acid as a new capping ligand. For this purpose, the organometallic approach was applied as the synthesis method. The morphology and crystalline structure of the obtained particles was characterized by state-of-the art techniques (TEM, HRTEM, WAXS) and their surface composition was determined by various techniques (solution and solid-state NMR, IR, chemical titration, DFT calculations). DFT calculations of the vibrational features of model NPs and of the chemical shifts of model clusters allowed us to secure the spectroscopic experimental assignations. Spectroscopic data as well as DFT mechanistic studies showed that ethanoic acid lies on the metal surface as ethanoate, together with hydrogen atoms. The optimal surface composition determined by DFT calculations appeared to be ca. [0.4-0.6] H/Rusurf and 0.4 ethanoate/RuSurf, which was corroborated by experimental results. Moreover, for such a composition, a hydrogen adsorption Gibbs free energy in the range -2.0 to -3.0 kcal mol-1 was calculated, which makes these ruthenium NPs a promising nanocatalyst for the hydrogen evolution reaction in the electrolysis of water.

14.
ChemSusChem ; 12(12): 2493-2514, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-30957439

RESUMEN

Both global warming and limited fossil resources make the transition from fossil to solar fuels an urgent matter. In this regard, the splitting of water activated by sunlight is a sustainable and carbon-free new energy conversion scheme able to produce efficient technological devices. The availability of appropriate catalysts is essential for the proper kinetics of the two key processes involved, namely, the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). During the last decade, ruthenium nanoparticle derivatives have emerged as true potential substitutes for the state-of-the-art platinum and iridium oxide species for the HER and OER, respectively. Thus, after a summary of the most common methods for catalyst benchmarking, this review covers the most significant developments of ruthenium-based nanoparticles used as catalysts for the water-splitting process. Furthermore, the key factors that govern the catalytic performance of these nanocatalysts are discussed in view of future research directions.

15.
Chem Commun (Camb) ; 54(51): 7070-7073, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29876568

RESUMEN

Herein we present ruthenium nanoparticles (Ru-NPs) stabilized with two rigid NHC ligands derived from cholesterol. The obtained nanoparticles were fully characterized and applied in the hydrogenation of various aromatic compounds under mild conditions. Interestingly, the more bulky ligand gives a slightly lower ligand coverage and a faster catalyst.

16.
Dalton Trans ; 46(43): 15070-15079, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29067366

RESUMEN

The choice of suitable organometallic precursors, [Re2(C3H5)4] and [Ru(Me-Allyl)2COD] or [Ru(COD)(COT)], allows us to synthesize polyvinylpyrrolidone (PVP) stabilized bimetallic RuRe nanoparticles of ca. 1.3 nm with narrow size dispersity, displaying the hcp crystal structure and to control their chemical order: an alloy or Re rich surface. The structural features of these NPs were determined using complementary characterization techniques (TEM, HRTEM, STEM-HAADF, EDX, WAXS, FT-IR, MAS-NMR and ICP). In particular, surface state investigation based on CO adsorption and oxidation reactions provided useful information of the chemical order in these nanoparticles. The RuRe NPs were obtained as stable colloidal solutions or powders. Surface reactivity studies demonstrated that the alloy type RuRe/PVP NPs show better resistance to oxidation than the ones displaying a Re enriched surface and are more active towards CO dissociation than monometallic Re/PVP NPs as a result of the synergic effect between Ru and Re. Interestingly, the dissociation of CO was not observed with RuRe/PVP NPs displaying a Re enriched surface. Besides the synthetic aspect, this work highlights the crucial influence of the chemical order resulting from the choice of the metal sources in the control of the reactivity of ultra-small metal nanoparticles.

17.
Dalton Trans ; 46(41): 14318-14324, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29019367

RESUMEN

Herein we report a one pot organometallic strategy to access alumina-embedded Pd nanoparticles. Unexpectedly, the decomposition of the organometallic complex tris(dibenzylideneacetone)dipalladium(0), Pd2(dba)3, by dihydrogen in the presence of aluminum isopropoxide, Al(iPrO)3, and without extra stabilizers, was found to be an efficient method to generate a Pd colloidal solution. Careful characterization studies revealed that the so-obtained Pd nanoparticles were stabilized by an aluminum isopropoxide tetramer and 1,5-diphenyl-pentan-3-one, which was produced after reduction of the dba ligand from the organometallic precursor. Moreover, calcination of the obtained nanomaterial in air at 773 K for 2 h resulted in a nanocomposite material containing Pd nanoparticles embedded in Al2O3. This stabilization strategy opens new possibilities for the preparation of transition metal nanoparticles embedded in oxides.

18.
Dalton Trans ; 46(35): 11768-11778, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28829078

RESUMEN

In this work, we describe the synthesis of a new N-heterocyclic carbene (NHC) ligand, derived from a hybrid pyrazole-imidazolium scaffold, namely 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-2-ylidene (L). This ligand has been used as a stabilizer for the organometallic synthesis of palladium(0) nanoparticles (Pd NPs). L presents a better stabilizing effect than its pre-carbenic HLCl counterpart, allowing the formation of isolated Pd NPs while HLCl yields aggregated ones. Additionally, molecular Pd(ii) coordination compounds of L and HLCl were synthesized and characterized to better understand the coordination modes of these ligands. Both molecular and colloidal Pd systems have been further tested in catalytic C-C coupling processes. Three different types of reactions have been observed depending on the catalytic system: (i) the Suzuki-Miyaura reaction takes place with Pd molecular complexes; (ii) a secondary reaction, the dehalogenation of the substrate, is always detected and (iii) the C-C homocoupling between two molecules of bromoarenes is observed with colloidal catalysts.

19.
Chemistry ; 23(52): 12779-12786, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28612457

RESUMEN

Soluble platinum nanoparticles (Pt NPs) ligated by two different long-chain N-heterocyclic carbenes (LC-IPr and LC-IMe) were synthesized and fully characterized by TEM, high-resolution TEM, wide-angle X-ray scattering (WAXS), X-ray photoelectron spectroscopy (XPS), and solution NMR. The surface chemistry of these NPs (Pt@LC-IPr and Pt@LC-IMe) was investigated by FT-IR and solid state NMR using CO as a probe molecule. A clear influence of the bulkiness of the N-substituents on the size, surface state, and catalytic activity of these Pt NPs was observed. While Pt@LC-IMe showed no activity in the hydroboration of phenylacetylene, Pt@LC-IPr revealed good selectivity for the trans-isomer, which may be supported by a homogeneous species. This is the first example of hydroboration of acetylenes catalyzed by non-supported Pt NPs.

20.
Dalton Trans ; 46(15): 5082-5090, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28362451

RESUMEN

A series of Ni(0) nanocatalysts was prepared from a Ni(COD)2 complex in the presence of different stabilizers (hexadecylamine, polyvinylpyrrolidone (PVP), PVP/triphenylphosphine, octanoic acid and stearic acid) for their evaluation in the selective hydrogenation reaction of α,ß-unsaturated carbonyl compounds by H2 under mild reaction conditions, i.e., low H2 pressure, temperature and catalyst loading. All nanocatalysts were active in reducing only the C[double bond, length as m-dash]C bond and this chemoselectivity was attributed to the reduced nature of the Ni-NPs surface. Moreover, the hydrogenation reaction rate appeared to be sensitive to ligand type, with the carboxylic acid-stabilized systems showing the best performances. A full kinetic investigation into the t-chalcone chemoselective reduction of the C[double bond, length as m-dash]C bond, with the best catalyst (Ni-octanoic acid) revealed that the rate-determining step is the hydrogenation of the adsorbed substrate on the NPs surface, following a Horiuti-Polanyi type of mechanism. Regarding sustainable chemistry concerns, the best catalyst could be reused up to 10 times without significant loss of activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA