Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 11(9)2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563751

RESUMEN

Epidemiological studies reveal a correlation between air pollution exposure and gastrointestinal (GI) diseases, yet few studies have investigated the role of inhaled particulate matter on intestinal integrity in conjunction with a high-fat (HF) diet. Additionally, there is currently limited information on probiotics in mitigating air-pollutant responses in the intestines. Thus, we investigated the hypothesis that exposure to inhaled diesel exhaust particles (DEP) and a HF diet can alter intestinal integrity and inflammation, which can be attenuated with probiotics. 4-6-w-old male C57Bl/6 mice on a HF diet (45% kcal fat) were randomly assigned to be exposed via oropharyngeal aspiration to 35 µg of DEP suspended in 35 µL of 0.9% sterile saline or sterile saline (CON) only twice a week for 4 w. A subset of mice was treated with 0.3 g/day of Winclove Ecologic® barrier probiotics (PRO) in drinking water throughout the duration of the study. Our results show that DEP exposure ± probiotics resulted in increased goblet cells and mucin (MUC)-2 expression, as determined by AB/PAS staining. Immunofluorescent quantification and/or RT-qPCR showed that DEP exposure increases claudin-3, occludin, zona occludens (ZO)-1, matrix metalloproteinase (MMP)-9, and toll-like receptor (TLR)-4, and decreases tumor necrosis factor (TNF)-α and interleukin (IL)-10 expression compared to CON. DEP exposure + probiotics increases expression of claudin-3, occludin, ZO-1, TNF-α, and IL-10 and decreases MMP-9 and TLR-4 compared to CON + PRO in the small intestine. Collectively, these results show that DEP exposure alters intestinal integrity and inflammation in conjunction with a HF diet. Probiotics proved fundamental in understanding the role of the microbiome in protecting and altering inflammatory responses in the intestines following exposure to inhaled DEP.


Asunto(s)
Probióticos , Emisiones de Vehículos , Adyuvantes Inmunológicos , Animales , Claudina-3 , Dieta Alta en Grasa/efectos adversos , Factores Inmunológicos , Inflamación , Intestinos , Masculino , Ratones , Ratones Endogámicos C57BL , Ocludina , Probióticos/farmacología , Factor de Necrosis Tumoral alfa
2.
Part Fibre Toxicol ; 19(1): 10, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35135577

RESUMEN

BACKGROUND: The gut microbiota plays a vital role in host homeostasis and is associated with inflammation and cardiovascular disease (CVD) risk. Exposure to particulate matter (PM) is a known mediator of inflammation and CVD and is reported to promote dysbiosis and decreased intestinal integrity. However, the role of inhaled traffic-generated PM on the gut microbiome and its corresponding systemic effects are not well-characterized. Thus, we investigated the hypothesis that exposure to inhaled diesel exhaust particles (DEP) alters the gut microbiome and promotes microbial-related inflammation and CVD biomarkers. 4-6-week-old male C57Bl/6 mice on either a low-fat (LF, 10% fat) or high-fat (HF, 45% fat) diet were exposed via oropharyngeal aspiration to 35 µg DEP suspended in 35 µl saline or saline only (CON) 2x/week for 30 days. To determine whether probiotics could prevent diet or DEP exposure mediated alterations in the gut microbiome or systemic outcomes, a subset of animals on the HF diet were treated orally with 0.3 g/day (~ 7.5 × 108 CFU/day) of Winclove Ecologic® Barrier probiotics throughout the study. RESULTS: Our results show that inhaled DEP exposure alters gut microbial profiles, including reducing Actinobacteria and expanding Verrucomicrobia and Proteobacteria. We observed increased circulating LPS, altered circulating cytokines (IL-1α, IL-3, IL-13, IL-15, G-CSF, LIF, MIP-2, and TNF-α), and CVD biomarkers (siCAM, PAI-1, sP-Selectin, thrombomodulin, and PECAM) in DEP-exposed and/or HF diet mice. Furthermore, probiotics attenuated the observed reduction of Actinobacteria and expansion of Proteobacteria in DEP-exposed and HF-diet mice. Probiotics mitigated circulating cytokines (IL-3, IL-13, G-CSF, RANTES, and TNF- α) and CVD biomarkers (siCAM, PAI-1, sP-Selectin, thrombomodulin, and PECAM) in respect to DEP-exposure and/or HF diet. CONCLUSION: Key findings of this study are that inhaled DEP exposure alters small intestinal microbial profiles that play a role in systemic inflammation and early CVD biomarkers. Probiotic treatment in this study was fundamental in understanding the role of inhaled DEP on the microbiome and related systemic inflammatory and CVD biomarkers.


Asunto(s)
Enfermedades Cardiovasculares , Microbiota , Animales , Biomarcadores , Enfermedades Cardiovasculares/inducido químicamente , Citocinas , Factor Estimulante de Colonias de Granulocitos , Inflamación/inducido químicamente , Interleucina-13 , Interleucina-3 , Masculino , Ratones , Ratones Endogámicos C57BL , Material Particulado , Inhibidor 1 de Activador Plasminogénico , Trombomodulina , Emisiones de Vehículos/toxicidad
3.
Part Fibre Toxicol ; 18(1): 3, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33419468

RESUMEN

BACKGROUND: Exposure to traffic-generated emissions is associated with the development and exacerbation of inflammatory lung disorders such as chronic obstructive pulmonary disorder (COPD) and idiopathic pulmonary fibrosis (IPF). Although many lung diseases show an expansion of Proteobacteria, the role of traffic-generated particulate matter pollutants on the lung microbiota has not been well-characterized. Thus, we investigated the hypothesis that exposure to diesel exhaust particles (DEP) can alter commensal lung microbiota, thereby promoting alterations in the lung's immune and inflammatory responses. We aimed to understand whether diet might also contribute to the alteration of the commensal lung microbiome, either alone or related to exposure. To do this, we used male C57Bl/6 mice (4-6-week-old) on either regular chow (LF) or high-fat (HF) diet (45% kcal fat), randomly assigned to be exposed via oropharyngeal aspiration to 35 µg DEP, suspended in 35 µl 0.9% sterile saline or sterile saline only (control) twice a week for 30 days. A separate group of study animals on the HF diet was concurrently treated with 0.3 g/day of Winclove Ecologic® Barrier probiotics in their drinking water throughout the study. RESULTS: Our results show that DEP-exposure increases lung tumor necrosis factor (TNF)-α, interleukin (IL)-10, Toll-like receptor (TLR)-2, TLR-4, and the nuclear factor kappa B (NF-κB) histologically and by RT-qPCR, as well as Immunoglobulin A (IgA) and Immunoglobulin G (IgG) in the bronchoalveolar lavage fluid (BALF), as quantified by ELISA. We also observed an increase in macrophage infiltration and peroxynitrite, a marker of reactive oxygen species (ROS) + reactive nitrogen species (RNS), immunofluorescence staining in the lungs of DEP-exposed and HF-diet animals, which was further exacerbated by concurrent DEP-exposure and HF-diet consumption. Histological examinations revealed enhanced inflammation and collagen deposition in the lungs DEP-exposed mice, regardless of diet. We observed an expansion of Proteobacteria, by qPCR of bacterial 16S rRNA, in the BALF of DEP-exposed mice on the HF diet, which was diminished with probiotic-treatment. CONCLUSIONS: Our findings suggest that exposure to DEP causes persistent and sustained inflammation and bacterial alterations in a ROS-RNS mediated fashion, which is exacerbated by concurrent consumption of an HF diet.


Asunto(s)
Dieta Alta en Grasa , Emisiones de Vehículos , Animales , Líquido del Lavado Bronquioalveolar , Inflamación , Pulmón , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrógeno , Material Particulado/toxicidad , ARN Ribosómico 16S , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Emisiones de Vehículos/toxicidad
4.
J Alzheimers Dis ; 78(4): 1453-1471, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33164937

RESUMEN

BACKGROUND: Multiple studies report a strong correlation between traffic-generated air pollution-exposure and detrimental outcomes in the central nervous system (CNS), including Alzheimer's disease (AD). Incidence of AD is rapidly increasing and, worldwide, many live in regions where pollutants exceed regulatory standards. Thus, it is imperative to identify environmental pollutants that contribute to AD, and the mechanisms involved. OBJECTIVE: We investigated the effects of mixed gasoline and diesel engine emissions (MVE) on the expression of factors involved in progression of AD in the hippocampus and cerebrum in a young versus aged mouse model. METHODS: Young (2 months old) and aged (18 months old) male C57BL/6 mice were exposed to either MVE (300µg/m3 PM) or filtered air (FA) for 6 h/d, 7 d/wk, for 50 d. Immunofluorescence and RT-qPCR were used to quantify oxidative stress (8-OHdG) and expression of amyloid-ß protein precursor (AßPP), ß secretase (BACE1), amyloid-ß (Aß), aryl hydrocarbon receptor (AhR), cytochrome P450 (CYP) 1B1, angiotensin-converting enzyme (ACE1), and angiotensin II type 1 (AT1) receptor in the cerebrum and hippocampus, in addition to cerebral microvascular tight junction (TJ) protein expression. RESULTS: We observed age-related increases in oxidative stress, AhR, CYP1B1, Aß, BACE1, and AT1 receptor in the CA1 region of the hippocampus, and elevation of cerebral AßPP, AhR, and CYP1B1 mRNA, associated with decreased cerebral microvascular TJ protein claudin-5. MVE-exposure resulted in further promotion of oxidative stress, and significant increases in AhR, CYP1B1, BACE1, ACE1, and Aß, compared to the young and aged FA-exposed mice. CONCLUSION: Such findings suggest that MVE-exposure exacerbates the expression of factors in the CNS associated with AD pathogenesis in aged populations.


Asunto(s)
Enfermedad de Alzheimer/genética , Estrés Oxidativo/genética , Emisiones de Vehículos , 8-Hidroxi-2'-Desoxicoguanosina/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Cerebro/metabolismo , Citocromo P-450 CYP1B1/genética , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Peptidil-Dipeptidasa A/genética , Receptor de Angiotensina Tipo 1/genética , Receptores de Hidrocarburo de Aril/genética , Proteínas de Uniones Estrechas/genética , Contaminación por Tráfico Vehicular , Transcriptoma/genética
5.
Environ Res ; 181: 108913, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31753468

RESUMEN

Air pollution exposure is known to contribute to the progression of cardiovascular disease (CVD) and there is increasing evidence that dysbiosis of the gut microbiome may also play a role in the pathogenesis of CVD, including atherosclerosis. To date, the effects of inhaled air pollution mixtures on the intestinal epithelial barrier (IEB), and microbiota profiles are not well characterized, especially in susceptible individuals with comorbidity. Thus, we investigated the effects of inhaled ubiquitous air-pollutants, wood-smoke (WS) and mixed diesel and gasoline vehicle exhaust (MVE) on alterations in the expression of markers of integrity, inflammation, and microbiota profiles in the intestine of atherosclerotic Apolipoprotein E knockout (ApoE-/-) mice. To do this, male 8 wk-old ApoE-/- mice, on a high-fat diet, were exposed to either MVE (300 µg/m3 PM), WS; (∼450 µg/m3 PM), or filtered air (FA) for 6 h/d, 7 d/wk, for 50 d. Immunofluorescence and RT-PCR were used to quantify the expression of IEB components and inflammatory factors, including mucin (Muc)-2, tight junction (TJ) proteins, matrix metalloproteinase (MMP)-9, tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß, as well as Toll-like receptor (TLR)-4. Microbial profiling of the intestine was done using Illumina 16S sequencing of V4 16S rRNA PCR amplicons. We observed a decrease in intestinal Muc2 and TJ proteins in both MVE and WS exposures, compared to FA controls, associated with a significant increase in MMP-9, TLR-4, and inflammatory marker expression. Both WS and MVE-exposure resulted in decreased intestinal bacterial diversity, as well as alterations in microbiota profiles, including the Firmicutes: Bacteroidetes ratio at the phylum level. Our findings suggest inhalation exposure to either MVE or WS result in alterations in components involved in mucosal integrity, and also microbiota profiles and diversity, which are associated with increased markers of an inflammatory response.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Apolipoproteínas E , Microbioma Gastrointestinal , Contaminación del Aire , Animales , Inflamación , Intestinos , Masculino , Ratones , Ratones Noqueados , ARN Ribosómico 16S , Emisiones de Vehículos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA