Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 25(8): e202400056, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38386898

RESUMEN

Enzymatic modifications of small molecules are a common phenomenon in natural product biosynthesis, leading to the production of diverse bioactive compounds. In polyketide biosynthesis, modifications commonly take place after the completion of the polyketide backbone assembly by the polyketide synthases and the mature products are released from the acyl-carrier protein (ACP). However, exceptions to this rule appear to be widespread, as on-line hydroxylation, methyl transfer, and cyclization during polyketide assembly process are common, particularly in trans-AT PKS systems. Many of these modifications are catalyzed by specific domains within the modular PKS systems. However, several of the on-line modifications are catalyzed by stand-alone proteins. Those include the on-line Baeyer-Villiger oxidation, α-hydroxylation, halogenation, epoxidation, and methyl esterification during polyketide assembly, dehydrogenation of ACP-bound short fatty acids by acyl-CoA dehydrogenase-like enzymes, and glycosylation of ACP-bound intermediates by discrete glycosyltransferase enzymes. This review article highlights some of these trans-acting proteins that catalyze enzymatic modifications of ACP-bound small molecules in natural product biosynthesis.


Asunto(s)
Sintasas Poliquetidas , Policétidos , Sintasas Poliquetidas/metabolismo , Proteína Transportadora de Acilo/química , Policétidos/química
2.
ACS Chem Biol ; 18(8): 1797-1807, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37487226

RESUMEN

Cyanobacteria are tremendous producers of biologically active natural products, including the potent anti-inflammatory compound tolypodiol. However, linking biosynthetic gene clusters with compound production in cyanobacteria has lagged behind that in other bacterial genera. Tolypodiol is a meroterpenoid originally isolated from the cyanobacterium HT-58-2. Here we describe the identification of the tolypodiol biosynthetic gene cluster through heterologous expression in Anabaena and in vitro protein assays of a methyltransferase found in the tolypodiol biosynthetic gene cluster. We have also identified similar biosynthetic gene clusters in cyanobacterial and actinobacterial genomes, suggesting that meroterpenoids with structural similarity to the tolypodiols may be synthesized by other microbes. We also report the identification of two new analogs of tolypodiol that we have identified in both the original and heterologous producer. This work further illustrates the usefulness of Anabaena as a heterologous expression host for cyanobacterial compounds and how integrated approaches can help to link natural product compounds with their producing biosynthetic gene clusters.


Asunto(s)
Productos Biológicos , Diterpenos , Metiltransferasas , Familia de Multigenes
3.
J Nat Prod ; 86(7): 1723-1735, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37411007

RESUMEN

The saprotrophic filamentous fungus Myrothecium inundatum represents a chemically underexplored ascomycete with a high number of putative biosynthetic gene clusters in its genome. Here, we present new linear lipopeptides from nongenetic gene activation experiments using nutrient and salt variations. Metabolomics studies revealed four myropeptins, and structural analyses by NMR, HRMS, Marfey's analysis, and ECD assessment for their helical properties established their absolute configuration. A myropeptin biosynthetic gene cluster in the genome was identified. The myropeptins exhibit general nonspecific toxicity against all cancer cell lines in the NCI-60 panel, larval zebrafish with EC50 concentrations of 5-30 µM, and pathogenic bacteria and fungi (MICs of 4-32 µg/mL against multidrug-resistant S. aureus and C. auris). In vitro hemolysis, cell viability, and ionophore assays indicate that the myropeptins target mitochondrial and cellular membranes, inducing cell depolarization and cell death. The toxic activity is modulated by the length of the lipid side chain, which provides valuable insight into their structure-activity relationships.


Asunto(s)
Hypocreales , Staphylococcus aureus Resistente a Meticilina , Animales , Pez Cebra , Hypocreales/química , Metabolómica , Estructura Molecular
4.
ACS Chem Biol ; 18(2): 367-376, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36648321

RESUMEN

Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., Actinoplanes sp. SE50/110 (acarbose producer), Streptomyces glaucescens GLA.O (acarbose producer), and Streptomyces dimorphogenes ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism Streptomyces coelicolor M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from S. coelicolor M1152 and the PsOS-producing actinobacteria revealed that the S. coelicolor α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose.


Asunto(s)
Actinobacteria , Diabetes Mellitus Tipo 2 , Humanos , Acarbosa , Proteínas Bacterianas/metabolismo , Actinobacteria/metabolismo , alfa-Amilasas/metabolismo
5.
J Nat Prod ; 85(1): 105-114, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35044192

RESUMEN

Alkyne-containing natural products have been identified from plants, insects, algae, fungi, and bacteria. This class of natural products has been characterized as having a variety of biological activities. Polyynes are a subclass of acetylenic natural products that contain conjugated alkynes and are underrepresented in natural product databases due to the fact that they decompose during purification. Here we report a workflow that utilizes alkyne azide cycloaddition (AAC) reactions followed by LC-MS/MS analysis to identify acetylenic natural products. In this report, we demonstrate that alkyne azide cycloaddition reactions with p-bromobenzyl azide result in p-bromobenzyl-substituted triazole products that fragment to a common brominated tropylium ion. We were able to identify a synthetic alkyne spiked into the extract of Anabaena sp. PCC 7120 at a concentration of 10 µg/mL after optimization of MS/MS conditions. We then successfully identified the known natural product fischerellin A in the extract of Fischerella muscicola PCC 9339. Lastly, we identified the recently identified natural products protegenins A and C from Pseudomonas protegens Pf-5 through a combination of genome mining and RuAAC reactions. This is the first report of RuAAC reactions to detect acetylenic natural products. We also compare CuAAC and RuAAC reactions and find that CuAAC reactions produce fewer byproducts compared to RuAAC but is limited to terminal-alkyne-containing compounds. In contrast, RuAAC is capable of identification of both terminal and internal acetylenic natural products, but byproducts need to be eliminated from analysis by creation of an exclusion list. We believe that both CuAAC and RuAAC reactions coupled to LC-MS/MS represent a method for the untargeted identification of acetylenic natural products, but each method has strengths and weaknesses.


Asunto(s)
Alquinos/química , Productos Biológicos/química , Cromatografía Liquida/métodos , Reacción de Cicloadición , Rutenio/química , Espectrometría de Masas en Tándem/métodos , Catálisis
6.
Synth Biol (Oxf) ; 6(1): ysab019, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712843

RESUMEN

Cyanobacteria are promising chassis for synthetic biology applications due to the fact that they are photosynthetic organisms capable of growing in simple, inexpensive media. Given their slower growth rate than other model organisms such as Escherichia coli and Saccharomyces cerevisiae, there are fewer synthetic biology tools and promoters available for use in model cyanobacteria. Here, we compared a small library of promoter-riboswitch constructs for synthetic biology applications in Anabaena sp. PCC 7120, a model filamentous cyanobacterium. These constructs were designed from six cyanobacterial promoters of various strengths, each paired with one of two theophylline-responsive riboswitches. The promoter-riboswitch pairs were cloned upstream of a chloramphenicol acetyltransferase (cat) gene, and CAT activity was quantified using an in vitro assay. Addition of theophylline to cultures increased the CAT activity in almost all cases, allowing inducible protein production with natively constitutive promoters. We found that riboswitch F tended to have a lower induced and uninduced production compared to riboswitch E for the weak and medium promoters, although the difference was larger for the uninduced production, in accord with previous research. The strong promoters yielded a higher baseline CAT activity than medium strength and weak promoters. In addition, we observed no appreciable difference between CAT activity measured from strong promoters cultured in uninduced and induced conditions. The results of this study add to the genetic toolbox for cyanobacteria and allow future natural product and synthetic biology researchers to choose a construct that fits their needs.

7.
Nat Commun ; 12(1): 101, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397942

RESUMEN

Western diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes (T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein, we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome interactions under WD to infer which members of microbiota contribute to the altered host metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful effects on host's metabolism. We then validate the functional role of the predicted bacteria in regulating metabolism and show that they act via different host pathways. Our gene expression and electron microscopy studies show that two species from Lactobacillus genus act upon mitochondria in the liver leading to the improvement of lipid metabolism. Metabolomics analyses revealed that reduced glutathione may mediate these effects. Our study identifies potential probiotic strains for T2D and provides important insights into mechanisms of their action.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/microbiología , Dieta Occidental , Lactobacillus/metabolismo , Mitocondrias Hepáticas/metabolismo , Animales , Bilirrubina/sangre , Diabetes Mellitus Tipo 2/genética , Microbioma Gastrointestinal , Regulación de la Expresión Génica , Glucosa/metabolismo , Glutatión/sangre , Glutatión/metabolismo , Humanos , Metabolismo de los Lípidos , Masculino , Metabolómica , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/ultraestructura , Reproducibilidad de los Resultados , Transcriptoma/genética
8.
Plant Direct ; 4(9): e00267, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005857

RESUMEN

The medicinal plant Catharanthus roseus produces numerous secondary metabolites of interest for the treatment of many diseases - most notably for the terpene indole alkaloid (TIA) vinblastine, which is used in the treatment of leukemia and Hodgkin's lymphoma. Historically, methyl jasmonate (MeJA) has been used to induce TIA production, but in the past, this has only been investigated in whole seedlings, cell culture, or hairy root culture. This study examines the effects of the phytohormones MeJA and ethylene on the induction of TIA biosynthesis and accumulation in the shoots and roots of 8-day-old seedlings of two varieties of C. roseus. Using LCMS and RT-qPCR, we demonstrate the importance of variety selection, as we observe markedly different induction patterns of important TIA precursor compounds. Additionally, both phytohormone choice and concentration have significant effects on TIA biosynthesis. Finally, our study suggests that several early-induction pathway steps as well as pathway-specific genes are likely to be transcriptionally regulated. Our findings highlight the need for a complete set of'omics resources in commonly used C. roseus varieties and the need for caution when extrapolating results from one cultivar to another.

9.
Int J Microbiol ; 2020: 8898631, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676116

RESUMEN

Indonesian marine environments are known to house diverse organisms. However, the potential for bacteria from these environments as a source of antibacterial agents has not been widely studied. This study aims to explore the antibacterial potential of secondary metabolites produced by bacterial symbionts from sponges and corals collected in the Indonesian waters. Extracts of 12 bacterial isolates from sponges or corals were prepared by cultivating the bacteria under a number of different media conditions and using agar well diffusion assays to test for antibacterial activity. In addition, the morphology, physiology, and biochemical characteristics and 16S rRNA sequence of each isolate were used to determine their taxonomic classification. All tested bacterial isolates were able to produce secondary metabolites with various levels of antibacterial activity depending on medium composition and culture conditions. Two of the bacteria (RS3 and RC4) showed strong antibacterial activities against both Gram-negative and Gram-positive bacteria. A number of isolates (RS1, RS3, and RC2) were co-cultured with mycolic acid-containing bacteria, Mycobacterium smegmatis or Rhodococcus sp. However, no improvements in their antibacterial activity were observed. All of the 12 bacteria tested were identified as Streptomyces spp. LC-MS analysis of EtOAc extracts from the most active strains RS3 and RC4 revealed the presence of a number of dactinomycin analogues and potentially new secondary metabolites. Symbiotic Streptomyces spp. from sponges and corals of the Indonesian marine environments have great potential as a source of broad-spectrum antibacterial agents.

10.
ACS Synth Biol ; 9(1): 63-75, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31846576

RESUMEN

Cyanobacteria are prolific producers of natural products, and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters, and here we present the use of Anabaena sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native Anabaena 7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by coconjugation.


Asunto(s)
Alcaloides/biosíntesis , Anabaena/genética , Anabaena/metabolismo , Productos Biológicos/metabolismo , Toxinas de Lyngbya/biosíntesis , Ingeniería Metabólica/métodos , Proteínas Bacterianas/genética , Codón/genética , Genes Bacterianos , Familia de Multigenes , Plásmidos/genética
11.
Medchemcomm ; 10(9): 1517-1530, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31673313

RESUMEN

The 3-ketoacyl-ACP synthase (KAS) III proteins are one of the most abundant enzymes in nature, as they are involved in the biosynthesis of fatty acids and natural products. KAS III enzymes catalyse a carbon-carbon bond formation reaction that involves the α-carbon of a thioester and the carbonyl carbon of another thioester. In addition to the typical KAS III enzymes involved in fatty acid and polyketide biosynthesis, there are proteins homologous to KAS III enzymes that catalyse reactions that are different from that of the traditional KAS III enzymes. Those include enzymes that are responsible for a head-to-head condensation reaction, the formation of acetoacetyl-CoA in mevalonate biosynthesis, tailoring processes via C-O bond formation or esterification, as well as amide formation. This review article highlights the diverse reactions catalysed by this class of enzymes and their role in natural product biosynthesis.

12.
PLoS One ; 13(12): e0208769, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30533061

RESUMEN

Laboratory science requires careful maintenance of sterile reagents and tools as well as the sterilization of waste prior to disposal. However, steam autoclaves typically used for this purpose may not be readily accessible to everyone in the scientific community, such as K-12 teachers, researchers in the field, students in under-funded laboratories, or persons in the developing world who lack funding and resources. This work examines the use of commercial electric pressure cookers as an alternative method for the sterilization of media, instruments, and waste. Four commonly available brands of pressure cooker were tested for their ability to sterilize microbiological media, a variety of metal instruments, and high-titer microbial cultures. All four pressure cookers were able to sterilize these starting materials as well as a range of microbial types, including Gram-positive bacteria, Gram-negative bacteria, filamentous fungi, unicellular fungi, and mixed environmental samples. Only the Instant Pot, however, was able to sterilize autoclave tester ampoules of Geobacillus stearothermophilus spores. These results suggest that, depending on the nature of the work undertaken, store-bought pressure cookers can be an appropriate substitute for commercial autoclaves. Their adoption may also help increase the accessibility of science to a broader range of investigators.


Asunto(s)
Esterilización/instrumentación , Medios de Cultivo , Contaminación de Equipos/prevención & control , Hongos , Bacterias Gramnegativas , Bacterias Grampositivas , Laboratorios , Presión , Esporas Bacterianas
13.
FEMS Microbiol Lett ; 365(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982530

RESUMEN

Cyanobacterial natural products offer new possibilities for drugs and lead compounds but many factors can inhibit the production of sufficient yields for pharmaceutical processes. While Escherichia coli and Streptomyces sp. have been used as heterologous expression hosts to produce cyanobacterial natural products, they have not met with resounding success largely due to their inability to recognize cyanobacterial promoter regions. Recent work has shown that the filamentous freshwater cyanobacterium Anabaena sp. strain PCC 7120 recognizes various cyanobacterial promoter regions and can produce lyngbyatoxin A from the native promoter. Introduction of Anabaena sigma factors into E. coli might allow the native transcriptional machinery to recognize cyanobacterial promoters. Here, all 12 Anabaena sigma factors were expressed in E. coli and subsets were found to initiate transcription from several cyanobacterial promoters based on transcriptional fusions to the chloramphenicol acetyltransferase (CAT) reporter. Expression of individual Anabaena sigma factors in E. coli did not result in lyngbyatoxin A production from its native cyanobacterial gene cluster, possibly hindered by deficiencies in recognition of cyanobacterial ribosomal binding sites by native E. coli translational machinery. This represents an important step toward engineering E. coli into a general heterologous expression host for cyanobacterial biosynthetic gene cluster expression.


Asunto(s)
Anabaena/genética , Proteínas Bacterianas/genética , Escherichia coli/genética , Expresión Génica , Ribosomas/metabolismo , Factor sigma/genética , Anabaena/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Toxinas de Lyngbya/metabolismo , Familia de Multigenes , Iniciación de la Cadena Peptídica Traduccional , Regiones Promotoras Genéticas , Ribosomas/genética , Factor sigma/metabolismo
14.
J Nat Prod ; 81(6): 1417-1425, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29808677

RESUMEN

Jizanpeptins A-E (1-5) are micropeptin depsipeptides isolated from a Red Sea specimen of a Symploca sp. cyanobacterium. The planar structures of the jizanpeptins were established using NMR spectroscopy and mass spectrometry and contain 3-amino-6-hydroxy-2-piperidone (Ahp) as one of eight residues in a typical micropeptin motif, as well as a side chain terminal glyceric acid sulfate moiety. The absolute configurations of the jizanpeptins were assigned using a combination of Marfey's methodology and chiral-phase HPLC analysis of hydrolysis products compared to commercial and synthesized standards. Jizanpeptins A-E showed specific inhibition of the serine protease trypsin (IC50 = 72 nM to 1 µM) compared to chymotrypsin (IC50 = 1.4 to >10 µM) in vitro and were not overtly cytotoxic to HeLa cervical or NCI-H460 lung cancer cell lines at micromolar concentrations.


Asunto(s)
Cianobacterias/química , Depsipéptidos/química , Depsipéptidos/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Quimotripsina/química , Quimotripsina/farmacología , Humanos , Océano Índico , Espectroscopía de Resonancia Magnética/métodos , Piperidonas/química , Piperidonas/farmacología
15.
ACS Chem Biol ; 13(6): 1426-1437, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29763292

RESUMEN

Nature is a prolific producers of bioactive natural products with an array of biological activities and impact on human and animal health. But with great power comes great responsibility, and the organisms that produce a bioactive compound must be resistant to its biological effects to survive during production/accumulation. Microorganisms, particularly bacteria, have developed different strategies to prevent self-toxicity. Here, we review a few of the major mechanisms including the mechanism of resistance with a focus on self-resistant protein variants, target proteins that contain amino acid substitutions to reduce the binding of the bioactive natural product, and therefore its inhibitory effects are highlighted in depth. We also try to identify some future avenues of research and challenges that need to be addressed.


Asunto(s)
Productos Biológicos/metabolismo , Farmacorresistencia Bacteriana/fisiología , Isoformas de Proteínas/fisiología , Animales , Fenómenos Fisiológicos Bacterianos/genética , Farmacorresistencia Bacteriana/genética , Hongos/genética , Hongos/fisiología , Familia de Multigenes/genética , Fenómenos Fisiológicos de las Plantas/genética , Isoformas de Proteínas/genética , Vertebrados/genética , Vertebrados/fisiología
16.
Mol Microbiol ; 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29676808

RESUMEN

Multicellular development requires the careful orchestration of gene expression to correctly create and position specialized cells. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, nitrogen-fixing heterocysts are differentiated from vegetative cells in a reproducibly periodic and physiologically relevant pattern. While many genetic factors required for heterocyst development have been identified, the role of HetZ has remained unclear. Here, we present evidence to clarify the requirement of hetZ for heterocyst production and support a model where HetZ functions in the patterning stage of differentiation. We show that a clean, nonpolar deletion of hetZ fails to express the developmental genes hetR, patS, hetP and hetZ correctly and fails to produce heterocysts. Complementation and overexpression of hetZ in a hetP mutant revealed that hetZ was incapable of bypassing hetP, suggesting that it acts upstream of hetP. Complementation and overexpression of hetZ in a hetR mutant, however, demonstrated bypass of hetR, suggesting that it acts downstream of hetR and is capable of bypassing the need for hetR for differentiation irrespective of nitrogen status. Finally, protein-protein interactions were observed between HetZ and HetR, Alr2902 and HetZ itself. Collectively, this work suggests a regulatory role for HetZ in the patterning phase of cellular differentiation in Anabaena.

17.
mBio ; 9(1)2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339425

RESUMEN

Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by the GacS-GacA global regulatory system. Intriguingly, spontaneous mutations in gacS or gacA (Gac- mutants) are commonly observed in laboratory cultures. Here we investigated the role of secondary metabolism in the accumulation of Gac- mutants in Pseudomonas protegens strain Pf-5. Our results showed that secondary metabolism, specifically biosynthesis of the antimicrobial compound pyoluteorin, contributes significantly to the accumulation of Gac- mutants. Pyoluteorin biosynthesis, which poses a metabolic burden on the producer cells, but not pyoluteorin itself, leads to the accumulation of the spontaneous mutants. Interspecific competition also influenced the accumulation of the Gac- mutants: a reduced proportion of Gac- mutants accumulated when P. protegens Pf-5 was cocultured with Bacillus subtilis than in pure cultures of strain Pf-5. Overall, our study associated a fitness trade-off with secondary metabolism, with metabolic costs versus competitive benefits of production influencing the evolution of P. protegens, assessed by the accumulation of Gac- mutants.IMPORTANCE Many microorganisms produce antibiotics, which contribute to ecologic fitness in natural environments where microbes constantly compete for resources with other organisms. However, biosynthesis of antibiotics is costly due to the metabolic burdens of the antibiotic-producing microorganism. Our results provide an example of the fitness trade-off associated with antibiotic production. Under noncompetitive conditions, antibiotic biosynthesis led to accumulation of spontaneous mutants lacking a master regulator of antibiotic production. However, relatively few of these spontaneous mutants accumulated when a competitor was present. Results from this work provide information on the evolution of antibiotic biosynthesis and provide a framework for their discovery and regulation.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Mutación , Pseudomonas/crecimiento & desarrollo , Pseudomonas/genética , Metabolismo Secundario , Factores de Transcripción/genética , Metabolismo Energético , Interacciones Microbianas , Fenoles/metabolismo , Pseudomonas/metabolismo , Pirroles/metabolismo
18.
Biochemistry ; 56(30): 3934-3944, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28665591

RESUMEN

Burkholderia glumae converts the guanine base of guanosine triphosphate into an azapteridine and methylates both the pyrimidine and triazine rings to make toxoflavin. Strains of Burkholderia thailandensis and Burkholderia pseudomallei have a gene cluster encoding seven putative biosynthetic enzymes that resembles the toxoflavin gene cluster. Four of the enzymes are similar in sequence to BgToxBCDE, which have been proposed to make 1,6-didesmethyltoxoflavin (1,6-DDMT). One of the remaining enzymes, BthII1283 in B. thailandensis E264, is a predicted S-adenosylmethionine (SAM)-dependent N-methyltransferase that shows a low level of sequence identity to BgToxA, which sequentially methylates N6 and N1 of 1,6-DDMT to form toxoflavin. Here we show that, unlike BgToxA, BthII1283 catalyzes a single methyl transfer to N1 of 1,6-DDMT in vitro. In addition, we investigated the differences in reactivity and regioselectivity by determining crystal structures of BthII1283 with bound S-adenosylhomocysteine (SAH) or 1,6-DDMT and SAH. BthII1283 contains a class I methyltransferase fold and three unique extensions used for 1,6-DDMT recognition. The active site structure suggests that 1,6-DDMT is bound in a reduced form. The plane of the azapteridine ring system is orthogonal to its orientation in BgToxA. In BthII1283, the modeled SAM methyl group is directed toward the p orbital of N1, whereas in BgToxA, it is first directed toward an sp2 orbital of N6 and then toward an sp2 orbital of N1 after planar rotation of the azapteridine ring system. Furthermore, in BthII1283, N1 is hydrogen bonded to a histidine residue whereas BgToxA does not supply an obvious basic residue for either N6 or N1 methylation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia/enzimología , Metiltransferasas/metabolismo , Modelos Moleculares , Pirimidinonas/metabolismo , S-Adenosilmetionina/metabolismo , Triazinas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Histidina/química , Enlace de Hidrógeno , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Familia de Multigenes , Oxidación-Reducción , Filogenia , Conformación Proteica , Pirimidinonas/síntesis química , Pirimidinonas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/química , Especificidad de la Especie , Estereoisomerismo , Triazinas/química
19.
Nucleic Acids Res ; 45(W1): W42-W48, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28472505

RESUMEN

With the rise of multi-drug resistant pathogens and the decline in number of potential new antibiotics in development there is a fervent need to reinvigorate the natural products discovery pipeline. Most antibiotics are derived from secondary metabolites produced by microorganisms and plants. To avoid suicide, an antibiotic producer harbors resistance genes often found within the same biosynthetic gene cluster (BGC) responsible for manufacturing the antibiotic. Existing mining tools are excellent at detecting BGCs or resistant genes in general, but provide little help in prioritizing and identifying gene clusters for compounds active against specific and novel targets. Here we introduce the 'Antibiotic Resistant Target Seeker' (ARTS) available at https://arts.ziemertlab.com. ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets. The aim of this web server is to automate the screening of large amounts of sequence data and to focus on the most promising strains that produce antibiotics with new modes of action. ARTS integrates target directed genome mining methods, antibiotic gene cluster predictions and 'essential gene screening' to provide an interactive page for rapid identification of known and putative targets in BGCs.


Asunto(s)
Antibacterianos/biosíntesis , Farmacorresistencia Bacteriana/genética , Programas Informáticos , Actinobacteria/genética , Vías Biosintéticas/genética , Minería de Datos , Descubrimiento de Drogas , Genoma Bacteriano , Internet
20.
Elife ; 62017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262092

RESUMEN

Metabolic co-regulation between biosynthetic pathways for secondary metabolites is common in microbes and can play an important role in microbial interactions. Here, we describe a novel mechanism of metabolic co-regulation in which an intermediate in one pathway is converted into signals that activate a second pathway. Our study focused on the co-regulation of 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin, two antimicrobial metabolites produced by the soil bacterium Pseudomonas protegens. We show that an intermediate in DAPG biosynthesis, phloroglucinol, is transformed by a halogenase encoded in the pyoluteorin gene cluster into mono- and di-chlorinated phloroglucinols. The chlorinated phloroglucinols function as intra- and inter-cellular signals that induce the expression of pyoluteorin biosynthetic genes, pyoluteorin production, and pyoluteorin-mediated inhibition of the plant-pathogenic bacterium Erwinia amylovora. This metabolic co-regulation provides a strategy for P. protegens to optimize the deployment of secondary metabolites with distinct roles in cooperative and competitive microbial interactions.


Asunto(s)
Vías Biosintéticas/genética , Regulación Bacteriana de la Expresión Génica , Pseudomonas/genética , Pseudomonas/metabolismo , Metabolismo Secundario , Antibacterianos/metabolismo , Antibiosis , Erwinia amylovora/efectos de los fármacos , Erwinia amylovora/crecimiento & desarrollo , Fenoles/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Pseudomonas/fisiología , Pirroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...