Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; : e0034224, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899884

RESUMEN

Black apples are the result of late-stage microbial decomposition after falling to the ground. This phenomenon is highly comparable from year to year, with the filamentous fungus Monilinia fructigena most commonly being the first invader, followed by Penicillium expansum. Motivated by the fact that only little chemistry has been reported from apple microbiomes, we set out to investigate the chemical diversity and potential ecological roles of secondary metabolites (SMs) in a total of 38 black apples. Metabolomics analyses were conducted on either whole apples or small excisions of fungal biomass derived from black apples. Annotation of fungal SMs in black apple extracts was aided by the cultivation of 15 recently isolated fungal strains on 9 different substrates in a One Strain Many Compounds (OSMAC) approach, leading to the identification of 3,319 unique chemical features. Only 6.4% were attributable to known compounds based on analysis of high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS/MS) data using spectral library matching tools. Of the 1,606 features detected in the black apple extracts, 32% could be assigned as fungal-derived, due to their presence in the OSMAC-based training data set. Notably, the detection of several antifungal compounds indicates the importance of such compounds for the invasion of and control of other microbial competitors on apples. In conclusion, the diversity and abundance of microbial SMs on black apples were found to be much higher than that typically observed for other environmental microbiomes. Detection of SMs known to be produced by the six fungal species tested also highlights a succession of fungal growth following the initial invader M. fructigena.IMPORTANCEMicrobial secondary metabolites constitute a significant reservoir of biologically potent and clinically valuable chemical scaffolds. However, their usefulness is hampered by rapidly developing resistance, resulting in reduced profitability of such research endeavors. Hence, the ecological role of such microbial secondary metabolites must be considered to understand how best to utilize such compounds as chemotherapeutics. Here, we explore an under-investigated environmental microbiome in the case of black apples; a veritable "low-hanging fruit," with relatively high abundances and diversity of microbially produced secondary metabolites. Using both a targeted and untargeted metabolomics approach, the interplay between metabolites, other microbes, and the apple host itself was investigated. This study highlights the surprisingly low incidence of known secondary metabolites in such a system, highlighting the need to study the functionality of secondary metabolites in microbial interactions and complex microbiomes.

2.
Nat Commun ; 15(1): 4486, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802389

RESUMEN

Bacterial-fungal interactions influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Here, we use a co-culture experimental evolution approach to investigate bacterial adaptation to the presence of a fungus, using a simple model of bacterial-fungal interactions encompassing the bacterium Bacillus subtilis and the fungus Aspergillus niger. We find in one evolving population that B. subtilis was selected for enhanced production of the lipopeptide surfactin and accelerated surface spreading ability, leading to inhibition of fungal expansion and acidification of the environment. These phenotypes were explained by specific mutations in the DegS-DegU two-component system. In the presence of surfactin, fungal hyphae exhibited bulging cells with delocalised secretory vesicles possibly provoking an RlmA-dependent cell wall stress. Thus, our results indicate that the presence of the fungus selects for increased surfactin production, which inhibits fungal growth and facilitates the competitive success of the bacterium.


Asunto(s)
Adaptación Fisiológica , Aspergillus niger , Bacillus subtilis , Lipopéptidos , Bacillus subtilis/fisiología , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Aspergillus niger/metabolismo , Aspergillus niger/fisiología , Aspergillus niger/crecimiento & desarrollo , Lipopéptidos/metabolismo , Péptidos Cíclicos/metabolismo , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Interacciones Microbianas/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Técnicas de Cocultivo , Mutación , Pared Celular/metabolismo
3.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32826219

RESUMEN

Pseudomonas fluorescens In5 synthesizes the antifungal cyclic lipopeptides (CLPs) nunamycin and nunapeptin, which are similar in structure and genetic organization to the pseudomonas-derived phytotoxins syringomycin and syringopeptin. Regulation of syringomycin and syringopeptin is dependent on the two-component global regulatory system GacS-GacA and the SalA, SyrF, and SyrG transcription factors, which activate syringomycin synthesis in response to plant signal molecules. Previously, we demonstrated that a specific transcription factor, NunF, positively regulates the synthesis of nunamycin and nunapeptin in P. fluorescens In5 and that the nunF gene is upregulated by fungal-associated molecules. This study focused on further unravelling the complex regulation governing CLP synthesis in P. fluorescens In5. Promoter fusions were used to show that the specific activator NunF is dependent on the global regulator of secondary metabolism GacA and is regulated by fungal-associated molecules and low temperatures. In contrast, GacA is stimulated by plant signal molecules leading to the hypothesis that P. fluorescens is a hyphosphere-associated bacterium carrying transcription factor genes that respond to signals indicating the presence of fungi and oomycetes. Based on these findings, we present a model for how synthesis of nunamycin and nunapeptin is regulated by fungal- and oomycete-associated molecules.IMPORTANCE Cyclic lipopeptide (CLP) synthesis gene clusters in pseudomonads display a high degree of synteny, and the structures of the peptides synthesized are very similar. Accordingly, the genomic island encoding the synthesis of syringomycin and syringopeptin in P. syringae pv. syringae closely resembles that of P. fluorescens In5, which contains genes coding for synthesis of the antifungal and anti-oomycete peptides nunamycin and nunapeptin, respectively. However, the regulation of syringomycin and syringopeptin synthesis is different from that of nunamycin and nunapeptin synthesis. While CLP synthesis in the plant pathogen P. syringae pv. syringae is induced by plant signal molecules, such compounds do not significantly influence synthesis of nunamycin and nunapeptin in P. fluorescens In5. Instead, fungal-associated molecules positively regulate antifungal peptide synthesis in P. fluorescens In5, while the synthesis of the global regulator GacA in P. fluorescens In5 is positively regulated by plant signal molecules but not fungal-associated molecules.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/biosíntesis , Proteínas Bacterianas/biosíntesis , Agentes de Control Biológico/metabolismo , Lipopéptidos/biosíntesis , Pseudomonas fluorescens/metabolismo , Regiones Promotoras Genéticas , Metabolismo Secundario
4.
J Nat Prod ; 82(5): 1387-1390, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30978024

RESUMEN

An S-methylated analogue of tropodithietic acid (TDA, 1), methyl troposulfenin (2), was isolated from the marine alphaproteobacterium Phaeobacter inhibens. The structure was elucidated by NMR and HRMS. Its inhibitory effect against the fish pathogen Vibrio anguillarum was 4-fold to 100-fold lower than that of the known antibacterial compound TDA. Methyl troposulfenin lacks the acidic proton of TDA, indicating that the methylation turns the potent antibacterial TDA into an inactive compound, and thereby, this analysis supports the proposed mode of action of TDA.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Rhodobacteraceae/química , Compuestos de Sulfhidrilo/aislamiento & purificación , Compuestos de Sulfhidrilo/farmacología , Tropolona/análogos & derivados , Animales , Enfermedades de los Peces/microbiología , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metilación , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Tropolona/aislamiento & purificación , Tropolona/farmacología , Vibrio/efectos de los fármacos
5.
Nat Commun ; 9(1): 2587, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968715

RESUMEN

Novofumigatonin (1), isolated from the fungus Aspergillus novofumigatus, is a heavily oxygenated meroterpenoid containing a unique orthoester moiety. Despite the wide distribution of orthoesters in nature and their biological importance, little is known about the biogenesis of orthoesters. Here we show the elucidation of the biosynthetic pathway of 1 and the identification of key enzymes for the orthoester formation by a series of CRISPR-Cas9-based gene-deletion experiments and in vivo and in vitro reconstitutions of the biosynthesis. The novofumigatonin pathway involves endoperoxy compounds as key precursors for the orthoester synthesis, in which the Fe(II)/α-ketoglutarate-dependent enzyme NvfI performs the endoperoxidation. NvfE, the enzyme catalyzing the orthoester synthesis, is an Fe(II)-dependent, but cosubstrate-free, endoperoxide isomerase, despite the fact that NvfE shares sequence homology with the known Fe(II)/α-ketoglutarate-dependent dioxygenases. NvfE thus belongs to a class of enzymes that gained an isomerase activity by losing the α-ketoglutarate-binding ability.


Asunto(s)
Aspergillus/metabolismo , Proteínas Fúngicas/metabolismo , Prostaglandina-E Sintasas/metabolismo , Terpenos/metabolismo , Aspergillus/genética , Vías Biosintéticas , Sistemas CRISPR-Cas , Catálisis , Proteínas Fúngicas/genética , Eliminación de Gen , Hierro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Peróxidos/metabolismo , Prostaglandina-E Sintasas/genética
6.
Microbiologyopen ; 6(6)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28782279

RESUMEN

Nunamycin and nunapeptin are two antimicrobial cyclic lipopeptides (CLPs) produced by Pseudomonas fluorescens In5 and synthesized by nonribosomal synthetases (NRPS) located on two gene clusters designated the nun-nup regulon. Organization of the regulon is similar to clusters found in other CLP-producing pseudomonads except for the border regions where putative LuxR-type regulators are located. This study focuses on understanding the regulatory role of the LuxR-type-encoding gene nunF in CLP production of P. fluorescens In5. Functional analysis of nunF coupled with liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that CLP biosynthesis is regulated by nunF. Quantitative real-time PCR analysis indicated that transcription of the NRPS genes catalyzing CLP production is strongly reduced when nunF is mutated indicating that nunF is part of the nun-nup regulon. Swarming and biofilm formation was reduced in a nunF knockout mutant suggesting that these CLPs may also play a role in these phenomena as observed in other pseudomonads. Fusion of the nunF promoter region to mCherry showed that nunF is strongly upregulated in response to carbon sources indicating the presence of a fungus suggesting that environmental elicitors may also influence nunF expression which upon activation regulates nunamycin and nunapeptin production required for the growth inhibition of phytopathogens.


Asunto(s)
Antibacterianos/biosíntesis , Regulación Bacteriana de la Expresión Génica , Lipopéptidos/biosíntesis , Pseudomonas fluorescens/metabolismo , Factores de Transcripción/metabolismo , Antibacterianos/química , Lipopéptidos/química , Pseudomonas fluorescens/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética
7.
Mycotoxin Res ; 33(1): 49-58, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27817100

RESUMEN

Bertholletia excelsa is the tree that produces Brazil nuts which have vast economic importance in the Amazon region and as an export commodity. The aim of this study was to assess the presence of Aspergillus section Nigri in Brazil nut samples at different stages of its production chain and to verify the toxigenic potential for fumonisin B2 (FB2) production of these isolates along with the presence of this mycotoxin in Brazil nut samples. The fungal infection ranged from 0 to 80% at the different stages of the harvest and processing chain and the water activity of the nuts from 0.273 to 0.994. A total of 1052 A. section Nigri strains were isolated from Brazil nuts and 200 strains were tested for their ability to produce FB2: 41 strains (20.5%) were FB2 producers with concentrations ranging from 0.09 to 37.25 mg/kg; 2 strains (1%) showed traces of FB2, less than the detection limit (0.08 mg/kg); and 157 (78.5%) were not FB2 producers. Although several samples showed high contamination by A. section Nigri, no sample was contaminated by FB2.


Asunto(s)
Aspergillus/aislamiento & purificación , Bertholletia/química , Bertholletia/microbiología , Carcinógenos Ambientales/análisis , Fumonisinas/análisis , Aspergillus/crecimiento & desarrollo , Aspergillus/metabolismo
8.
Anal Bioanal Chem ; 408(20): 5513-26, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27255106

RESUMEN

The filamentous fungus Stachybotrys chartarum is known for its toxic metabolites and has been associated with serious health problems, including mycotoxicosis, among occupants of contaminated buildings. Here, we present results from a case study, where an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for known and tentatively identified compounds characterized via UHPLC-quadruple time-of-flight (QTOF) screening of fungal culture extracts, wall scrapings and reference standards. The UHPLC-MS/MS method was able to identify 12 Stachybotrys metabolites, of which four could be quantified based on authentic standards and a further six estimated based on similarity to authentic standards. Samples collected from walls contaminated by S. chartarum in a water-damaged building showed that the two known chemotypes, S and A, coexisted. More importantly, a link between mycotoxin concentrations found on contaminated surfaces and in settled dust was made. One dust sample, collected from a water-damaged room, contained 10 pg/cm(2) macrocyclic trichothecenes (roridin E). For the first time, more than one spirocyclic drimane was detected in dust. Spirocyclic drimanes were detected in all 11 analysed dust samples and in total amounted to 600 pg/cm(2) in the water-damaged room and 340 pg/cm(2) in rooms adjacent to the water-damaged area. Their wide distribution in detectable amounts in dust suggested they could be good candidates for exposure biomarkers. Graphical abstract Stachybotrys growing on a gypsum board, and some of the compounds it produces.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medios de Cultivo/química , Polvo/análisis , Micotoxinas/química , Stachybotrys/química , Espectrometría de Masas en Tándem/métodos , Medios de Cultivo/análisis , Micotoxinas/análisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Appl Environ Microbiol ; 82(2): 502-9, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26519388

RESUMEN

Tropodithietic acid (TDA) is an antibacterial compound produced by some Phaeobacter and Ruegeria spp. of the Roseobacter clade. TDA production is studied in marine broth or agar since antibacterial activity in other media is not observed. The purpose of this study was to determine how TDA production is influenced by substrate components. High concentrations of ferric citrate, as present in marine broth, or other iron sources were required for production of antibacterially active TDA. However, when supernatants of noninhibitory, low-iron cultures of Phaeobacter inhibens were acidified, antibacterial activity was detected in a bioassay. The absence of TDA in nonacidified cultures and the presence of TDA in acidified cultures were verified by liquid chromatography-high-resolution mass spectrometry. A noninhibitory TDA analog (pre-TDA) was produced by P. inhibens, Ruegeria mobilis F1926, and Phaeobacter sp. strain 27-4 under low-iron concentrations and was instantaneously converted to TDA when pH was lowered. Production of TDA in the presence of Fe(3+) coincides with formation of a dark brown substance, which could be precipitated by acid addition. From this brown pigment TDA could be liberated slowly with aqueous ammonia, and both direct-infusion mass spectrometry and elemental analysis indicated a [Fe(III)(TDA)2]x complex. The pigment could also be produced by precipitation of pure TDA with FeCl3. Our results raise questions about how biologically active TDA is produced in natural marine settings where iron is typically limited and whether the affinity of TDA to iron points to a physiological or ecological function of TDA other than as an antibacterial compound.


Asunto(s)
Antibacterianos/biosíntesis , Hierro/metabolismo , Rhodobacteraceae/metabolismo , Tropolona/análogos & derivados , Antibacterianos/química , Espectrometría de Masas , Estructura Molecular , Rhodobacteraceae/genética , Tropolona/química , Tropolona/metabolismo
10.
Chem Commun (Camb) ; 46(43): 8234-6, 2010 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-20877844

RESUMEN

The conjugate addition of anilines onto unsaturated ketones, esters and N-acylpyrroles was investigated. Based on a recently proposed explanation for the phenomenon of on-water catalysis, operationally simple and mild reaction conditions for effecting these addition reactions have been developed. The success of these additions provides further support for the acid-catalysed nature of on-water chemistry.

11.
Chemistry ; 16(30): 8972-4, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20607776
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...