Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 568: 216284, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37356470

RESUMEN

Drug resistance and disease progression are common in multiple myeloma (MM) patients, underscoring the need for new therapeutic combinations. A high-throughput drug screen in 47 MM cell lines and in silico Huber robust regression analysis of drug responses revealed 43 potentially synergistic combinations. We hypothesized that effective combinations would reduce MYC expression and enhance p16 activity. Six combinations cooperatively reduced MYC protein, frequently over-expressed in MM and also cooperatively increased p16 expression, frequently downregulated in MM. Synergistic reductions in viability were observed with top combinations in proteasome inhibitor-resistant and sensitive MM cell lines, while sparing fibroblasts. Three combinations significantly prolonged survival in a transplantable Ras-driven allograft model of advanced MM closely recapitulating high-risk/refractory myeloma in humans and reduced viability of ex vivo treated patient cells. Common genetic pathways similarly downregulated by these combinations promoted cell cycle transition, whereas pathways most upregulated were involved in TGFß/SMAD signaling. These preclinical data identify potentially useful drug combinations for evaluation in drug-resistant MM and reveal potential mechanisms of combined drug sensitivity.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Ensayos Analíticos de Alto Rendimiento , Sinergismo Farmacológico , Ciclo Celular , Combinación de Medicamentos , Línea Celular Tumoral , Resistencia a Antineoplásicos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36895153

RESUMEN

Microplastics (MPs) in estuaries are sources of plastic debris that enter the marine environment. However, there is limited information on the seasonal effect on the accumulation of MPs in the estuaries of Thailand. The abundance and spatial distribution of MPs in the dry and wet seasons were investigated in the Chao Phraya River estuary, and possible emission sources were traced. Dominant factors affecting the distribution patterns of MPs have also been reported. All collected water samples contained MPs, with a mean abundance of 4.0 ± 2.8 × 105 particles/km2 in the wet season and 5.2 ± 3.3 × 105 particles/km2 in the dry season. Fragments were mostly observed, with polypropylene and polyethylene being the dominant polymers. The findings also showed that accumulation of MPs was directly influenced by the river discharge rate into the estuary. Further, the spatial distribution of MPs was closely related to seasonal variations in sea surface currents. Microplastic pollution status with seasonal variations and possible emission sources could provide important information to the government and local environmental organizations for MP pollution prevention and future MP studies in estuarine environments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Estuarios , Estaciones del Año , Ríos , Tailandia , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
4.
Mar Pollut Bull ; 173(Pt A): 112933, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34534937

RESUMEN

Microplastic (MP) pollution in estuarine environments is poorly characterized globally, although they are extensive buffer regions between terrestrial, freshwater and seawater environments. This research aims to investigate MP pollution levels and variations of MPs abundance with tidal fluctuation. Fourteen samples were collected from the surface water of the Chao Phraya River Estuary, Thailand using the Manta net at flood and ebb tides. The average abundance of microplastics at flood tide was 5.16 × 105 particles/km2 and at ebb tide was 3.11 × 105 particles/km2. The abundance of microplastics in the estuary was directly related to the tidal fluctuation, creating an accumulation of microplastics in the study area. Polypropylene, polyethylene, and polystyrene were the most common polymers. The findings provide important information on the pollution status of microplastics in the Chao Phraya River Estuary and the variation of suspended microplastics with tidal fluctuation should be considered in future estuarine microplastic studies.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Estuarios , Plásticos , Ríos , Tailandia , Contaminantes Químicos del Agua/análisis
5.
J Clin Invest ; 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34283806

RESUMEN

Both epidemiologic and cellular studies in the context of autoimmune diseases have established that protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a key regulator of T cell receptor (TCR) signaling. However, its mechanism of action in tumors and its translatability as a target for cancer immunotherapy have not been established. Here we show that a germline variant of PTPN22, rs2476601, portended a lower likelihood of cancer in patients. PTPN22 expression was also associated with markers of immune regulation in multiple cancer types. In mice, lack of PTPN22 augmented antitumor activity with greater infiltration and activation of macrophages, natural killer (NK) cells, and T cells. Notably, we generated a novel small molecule inhibitor of PTPN22, named L-1, that phenocopied the antitumor effects seen in genotypic PTPN22 knockout. PTPN22 inhibition promoted activation of CD8+ T cells and macrophage subpopulations toward MHC-II expressing M1-like phenotypes, both of which were necessary for successful antitumor efficacy. Increased PD1-PDL1 axis in the setting of PTPN22 inhibition could be further leveraged with PD1 inhibition to augment antitumor effects. Similarly, cancer patients with the rs2476601 variant responded significantly better to checkpoint inhibitor immunotherapy. Our findings suggest that PTPN22 is a druggable systemic target for cancer immunotherapy.

7.
Genome Biol ; 22(1): 154, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33985562

RESUMEN

BACKGROUND: The majority of pancreatic ductal adenocarcinomas (PDAC) are diagnosed at the metastatic stage, and standard therapies have limited activity with a dismal 5-year survival rate of only 8%. The liver and lung are the most common sites of PDAC metastasis, and each have been differentially associated with prognoses and responses to systemic therapies. A deeper understanding of the molecular and cellular landscape within the tumor microenvironment (TME) metastasis at these different sites is critical to informing future therapeutic strategies against metastatic PDAC. RESULTS: By leveraging combined mass cytometry, immunohistochemistry, and RNA sequencing, we identify key regulatory pathways that distinguish the liver and lung TMEs in a preclinical mouse model of metastatic PDAC. We demonstrate that the lung TME generally exhibits higher levels of immune infiltration, immune activation, and pro-immune signaling pathways, whereas multiple immune-suppressive pathways are emphasized in the liver TME. We then perform further validation of these preclinical findings in paired human lung and liver metastatic samples using immunohistochemistry from PDAC rapid autopsy specimens. Finally, in silico validation with transfer learning between our mouse model and TCGA datasets further demonstrates that many of the site-associated features are detectable even in the context of different primary tumors. CONCLUSIONS: Determining the distinctive immune-suppressive features in multiple liver and lung TME datasets provides further insight into the tissue specificity of molecular and cellular pathways, suggesting a potential mechanism underlying the discordant clinical responses that are often observed in metastatic diseases.


Asunto(s)
Genómica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Transducción de Señal , Microambiente Tumoral/inmunología , Animales , Autopsia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Línea Celular Tumoral , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia de Inmunosupresión , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/secundario , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Neoplasias Pancreáticas/patología , Linfocitos T/inmunología , Microambiente Tumoral/genética
8.
Cancers (Basel) ; 12(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066043

RESUMEN

New approaches to target MYC include the stabilization of a guanine-rich, G-quadruplex (G4) tertiary DNA structure in the NHE III region of its promoter. Recent screening of a small molecule microarray platform identified a benzofuran, D089, that can stabilize the MYC G4 and inhibit its transcription. D089 induced both dose- and time-dependent multiple myeloma cell death mediated by endoplasmic reticulum induced stress. Unexpectedly, we uncovered two mechanisms of cell death: cellular senescence, as evidenced by increased levels of p16, p21 and γ-H2AX proteins and a caspase 3-independent mechanism consistent with pyroptosis. Cells treated with D089 exhibited high levels of the cleaved form of initiator caspase 8; but failed to show cleavage of executioner caspase 3, a classical apoptotic marker. Cotreatment with the a pan-caspase inhibitor Q-VD-OPh did not affect the cytotoxic effect of D089. In contrast, cleaved caspase 1, an inflammatory caspase downstream of caspases 8/9, was increased by D089 treatment. Cells treated with D089 in addition to either a caspase 1 inhibitor or siRNA-caspase 1 showed increased IC50 values, indicating a contribution of cleaved caspase 1 to cell death. Downstream effects of caspase 1 activation after drug treatment included increases in IL1B, gasdermin D cleavage, and HMGB1 translocation from the nucleus to the cytoplasm. Drug treated cells underwent a 'ballooning' morphology characteristic of pyroptosis, rather than 'blebbing' typically associated with apoptosis. ASC specks colocalized with NLRP3 in proximity ligation assays after drug treatment, indicating inflammasome activation and further confirming pyroptosis as a contributor to cell death. Thus, the small molecule MYC G4 stabilizer, D089, provides a new tool compound for studying pyroptosis. These studies suggest that inducing both tumor senescence and pyroptosis may have therapeutic potential for cancer treatment.

9.
Front Oncol ; 10: 765, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477957

RESUMEN

Cutaneous T cell lymphomas (CTCL) comprise of a heterogeneous group of non-Hodgkin lymphomas derived from skin-homing T cells. Variation in clinical presentation and lack of definitive molecular markers make diagnosis especially challenging. The biology of CTCL remains elusive and clear links between genetic aberrations and epigenetic modifications that would result in clonal T cell expansion have not yet been identified. Nevertheless, in recent years, next generation sequencing (NGS) has enabled a much deeper understanding of the genomic landscape of CTCL by uncovering aberrant genetic pathways and epigenetic dysregulations. Additionally, single cell profiling is rapidly advancing our understanding of patients-specific tumor landscape and its interaction with the surrounding microenvironment. These studies have paved the road for future investigations that will explore the functional relevance of genetic alterations in the progression of disease. The ultimate goal of elucidating the pathogenesis of CTCL is to establish effective therapeutic targets with more durable clinical response and treat relapsing and refractory CTCL.

10.
Nat Commun ; 9(1): 4229, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30315240

RESUMEN

G-quadruplexes (G4s) are noncanonical DNA structures that frequently occur in the promoter regions of oncogenes, such as MYC, and regulate gene expression. Although G4s are attractive therapeutic targets, ligands capable of discriminating between different G4 structures are rare. Here, we describe DC-34, a small molecule that potently downregulates MYC transcription in cancer cells by a G4-dependent mechanism. Inhibition by DC-34 is significantly greater for MYC than other G4-driven genes. We use chemical, biophysical, biological, and structural studies to demonstrate a molecular rationale for the recognition of the MYC G4. We solve the structure of the MYC G4 in complex with DC-34 by NMR spectroscopy and illustrate specific contacts responsible for affinity and selectivity. Modification of DC-34 reveals features required for G4 affinity, biological activity, and validates the derived NMR structure. This work advances the design of quadruplex-interacting small molecules to control gene expression in therapeutic areas such as cancer.


Asunto(s)
Supervivencia Celular/fisiología , G-Cuádruplex , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sitios de Unión/genética , Sitios de Unión/fisiología , Western Blotting , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Humanos , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Estructura Molecular , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Unión Proteica/genética , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
11.
Malar J ; 16(1): 333, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28806957

RESUMEN

BACKGROUND: Emergence of artemisinin-resistant malaria in Southeast Asian countries threatens the global control of malaria. Although K13 kelch propeller has been assessed for artemisinin resistance molecular marker, most of the mutations need to be validated. In this study, artemisinin resistance was assessed by clinical and molecular analysis, including k13 and recently reported markers, pfarps10, pffd and pfmdr2. METHODS: A prospective cohort study in 1160 uncomplicated falciparum patients was conducted after treatment with artemisinin-based combination therapy (ACT), in 6 sentinel sites in Myanmar from 2009 to 2013. Therapeutic efficacy of ACT was assessed by longitudinal follow ups. Molecular markers analysis was done on all available day 0 samples. RESULTS: True recrudescence treatment failures cases and day 3 parasite positivity were detected at only the southern Myanmar sites. Day 3 positive and k13 mutants with higher prevalence of underlying genetic foci predisposing to become k13 mutant were detected only in southern Myanmar since 2009 and comparatively fewer mutations of pfarps10, pffd, and pfmdr2 were observed in western Myanmar. K13 mutations, V127M of pfarps10, D193Y of pffd, and T448I of pfmdr2 were significantly associated with day 3 positivity (OR: 6.48, 3.88, 2.88, and 2.52, respectively). CONCLUSIONS: Apart from k13, pfarps10, pffd and pfmdr2 are also useful for molecular surveillance of artemisinin resistance especially where k13 mutation has not been reported. Appropriate action to eliminate the resistant parasites and surveillance on artemisinin resistance should be strengthened in Myanmar. Trial registration This study was registered with ClinicalTrials.gov, identifier NCT02792816.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , Biomarcadores , Mianmar , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo
12.
J Investig Med High Impact Case Rep ; 4(4): 2324709616679191, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27900335

RESUMEN

Our search of literature revealed combined elevations of serum cancer antigen 125 levels and rheumatoid factor levels in a patient with peritoneal tuberculosis has rarely been reported. Thus, we describe the case of a 63-year-old female with large abdominal ascites and malignancy was ruled out with biopsy. High levels of serum cancer antigen and rheumatoid factor were noted. Physicians should be aware that tuberculosis infection could induce elevation of rheumatoid factor levels in the absence of rheumatologic symptoms or disease. A high index of suspicion is required because peritoneal tuberculosis is a great mimicker of other abdominal pathology, especially intraabdominal malignancies and can mislead physicians to undergo unnecessary interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA