Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14102, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38890338

RESUMEN

Large predators have disproportionate effects on their underlying food webs. Thus, appropriately assigning trophic positions has important conservation implications both for the predators themselves and for their prey. Large-bodied predators are often referred to as apex predators, implying that they are many trophic levels above primary producers. However, theoretical considerations predict both higher and lower trophic position with increasing body size. Nitrogen stable isotope values (δ15N) are increasingly replacing stomach contents or behavioral observations to assess trophic position and it is often assumed that ontogenetic dietary shifts result in higher trophic positions. Intraspecific studies based on δ15N values found a positive relationship between size and inferred trophic position. Here, we use datasets of predatory vertebrate ectotherms (crocodilians, turtles, lizards and fishes) to show that, although there are positive intraspecific relationships between size and δ15N values, relationships between stomach-content-based trophic level (TPdiet) and size are undetectable or negative. As there is usually no single value for 15N trophic discrimination factor (TDF) applicable to a predator species or its prey, estimates of trophic position based on δ15N in ectotherm vertebrates with large size ranges, may be inaccurate and biased. We urge a reconsideration of the sole use of δ15N values to assess trophic position and encourage the combined use of isotopes and stomach contents to assess diet and trophic level.


Asunto(s)
Tamaño Corporal , Cadena Alimentaria , Isótopos de Nitrógeno , Conducta Predatoria , Vertebrados , Animales , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/metabolismo , Conducta Predatoria/fisiología , Lagartos/fisiología , Lagartos/metabolismo , Peces/fisiología , Contenido Digestivo/química , Tortugas/fisiología , Tortugas/metabolismo
2.
J Exp Zool A Ecol Genet Physiol ; 309(10): 637-42, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18777523

RESUMEN

Detecting multiple paternity in wild populations of the broad-snouted caiman (Caiman latirostris) has important implications for conservation efforts. We have applied microsatellite markers to examine genetic variation in C. latirostris and also have provided the first data concerning detection of multiple paternity in wild populations of this species. Blood samples from four nest-guarding C. latirostris females and their hatchlings were obtained from Santa Fe Province, Argentina. Amplified products were analyzed by electrophoresis on 10% polyacrylamide gels and visualized with silver staining. Four out of the eight markers tested reliably amplified and yielded useful data. Using polyacrylamide gels with silver staining provides high enough resolution to obtain individual genotypes. In order to assess the presence or absence of more than two parents in each nest, we used the single locus Minimum Method, and applied Cervus 3.0 and Gerud 2.0 software in parentage analyses. Our results indicate more than one father in at least two families. This behavior could be the consequence of high habitat variability in the area where our population was sampled. The ability to understand mating systems is important for maintaining viable populations of exploited taxa like C. latirostris.


Asunto(s)
Caimanes y Cocodrilos/genética , Repeticiones de Microsatélite/genética , Animales , Argentina , Femenino , Genética de Población , Masculino , Reproducción
3.
J Exp Zool A Ecol Genet Physiol ; 309(10): 628-36, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18661469

RESUMEN

Broad-snouted caiman's (Caiman latirostris) geographic distribution comprises one of the widest latitudinal ranges among all crocodilians. In this study we analyzed the relationship between geographic distance (along the species latitudinal range) and genetic differentiation using DNA microsatellite loci developed for C. latirostris and Alligator mississippiensis. The results suggest that there is a consistent relationship between geographic distance and genetic differentiation; however, other biogeographical factors seem to be relevant. The Atlantic Chain (Serra do Mar) seems to be an effective geographic barrier, as well as the relatively narrow (< or =1.5 km) sea channel between Cardoso Island and the continent. In addition, coastal populations seem to have been well connected in recent geological time (Pleistocene 16,000 years ago) all along the eastern Brazilian coast. Further studies should focus on the São Francisco River drainage, which is still poorly known for this species.


Asunto(s)
Caimanes y Cocodrilos/genética , Variación Genética , Animales , Brasil , Frecuencia de los Genes , Genética de Población , Geografía , Heterocigoto , Repeticiones de Microsatélite/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA