Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Antioxidants (Basel) ; 12(6)2023 Jun 19.
Article En | MEDLINE | ID: mdl-37372032

Boric acid (BA) is the dominant form of boron in plasma, playing a role in different physiological mechanisms such as cell replication. Toxic effects have been reported, both for high doses of boron and its deficiency. Contrasting results were, however, reported about the cytotoxicity of pharmacological BA concentrations on cancer cells. The aim of this review is to briefly summarize the main findings in the field ranging from the proposed mechanisms of BA uptake and actions to its effects on cancer cells.

2.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article En | MEDLINE | ID: mdl-36768721

Anaplastic thyroid cancer (ATC) is a rare and rapidly fatal human cancer. Its usual treatment includes the combination of surgery, external hyperfractionated radiation therapy, and chemotherapy. These treatments permit achieving about 6-10 months of median survival. For this reason, it is challenging to predict the ATC patient clinical therapy responsiveness. Pazopanib is a multitarget tyrosine kinase inhibitor of VEGF receptors, PDGF, and c-Kit. Until now, the effect of pazopanib in primary human ATC cells (pATC) has not been reported in the literature. The aim of our study was to evaluate in vitro the antineoplastic effect of pazopanib in pATC. Surgical thyroidal tissues were collected from five patients with ATC, from thyroid biopsy at the moment of first surgical operation. An inhibition of proliferation, migration, and invasion, and an increase in apoptosis were demonstrated upon treating pATC cells with pazopanib (p < 0.05). Moreover, pazopanib was able to significantly decrease the VEGF expression in pATC cells (p < 0.05). To conclude, in this study, we demonstrate the antineoplastic activity of the antiangiogenic inhibitor, pazopanib, in human pATC in vitro.


Antineoplastic Agents , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/pathology , Vascular Endothelial Growth Factor A/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
Biofactors ; 49(2): 405-414, 2023 Mar.
Article En | MEDLINE | ID: mdl-36468437

Ferroptosis is a form of regulated cell death (RCD) characterized by intracellular iron ion accumulation and reactive oxygen species (ROS)-induced lipid peroxidation. Ferroptosis in cancer and ferroptosis-related anticancer drugs have recently gained interest in the field of cancer treatment. Boron is an essential trace element playing an important role in several biological processes. Recent studies have described contrasting effects of boric acid (BA) in cancer cells, ranging from protective/mitogenic to damaging/antiproliferative. Interestingly, boron has been shown to interfere with critical factors involved in ferroptosis-intracellular glutathione and lipid peroxidation in the first place. Thus, the present study was aimed to verify the ability of boron to modulate the ferroptotic process in HepG2 cells, a model of hepatocellular carcinoma. Our results indicate that-when used at high, pharmacological concentrations-BA can increase intracellular ROS, glutathione, and TBARS levels, and enhance ferroptosis induced by RSL3 and erastin. Also, high BA concentrations can directly induce ferroptosis, and such BA-induced ferroptosis can add to the cytotoxic effects of anticancer drugs sorafenib, doxorubicin and cisplatin. These observations suggest that BA could be exploited as a chemo-sensitizer agent in order to overcome cancer drug resistance in selected conditions. However, the possibility of reaching suitably high concentrations of BA in the tumor microenvironment will need to be further investigated.


Antineoplastic Agents , Ferroptosis , Liver Neoplasms , Humans , Cell Death , Reactive Oxygen Species/metabolism , Boron/pharmacology , Boron/therapeutic use , Lipid Peroxidation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Liver Neoplasms/drug therapy , Glutathione/metabolism , Tumor Microenvironment
5.
Clin Exp Immunol ; 209(3): 305-310, 2022 09 29.
Article En | MEDLINE | ID: mdl-35732270

Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme involved in the modulation of critical inflammatory pathways as well as in cancer progression. Auto-antibodies against GSTO1-1 were detected in the serum of patients with esophageal squamous cell carcinoma and were proposed as potential biomarkers in the early detection of the disease. Our findings show that anti-GSTO1-1 antibodies can be found in a variety of inflammatory diseases, including autoimmune rheumatoid arthritis, infectious SARS-CoV-2, and trichinellosis. Our findings strongly suggest that anti-GSTO1-1 antibodies may be a marker of tissue damage/inflammation rather than a specific tumor-associated biomarker.


COVID-19 , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Biomarkers, Tumor , Glutathione Transferase , Humans , Inflammation , SARS-CoV-2
6.
J Cyst Fibros ; 20(6): 1053-1061, 2021 11.
Article En | MEDLINE | ID: mdl-33583732

BACKGROUND: Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme that modulates the S-thiolation status of intracellular factors involved in cancer cell survival or in the inflammatory response. Studies focusing on chronic obstructive pulmonary disease (COPD) have demonstrated that GSTO1-1 is detectable in alveolar macrophages, airway epithelium and in the extracellular compartment, where its functions have not been completely understood. Moreover GSTO1-1 polymorphisms have been associated with an increased risk to develop COPD. Against this background, the aim of this study was to evaluate GSTO1-1 levels and its polymorphisms in cystic fibrosis (CF) patients. METHODS: Clinical samples from a previous study published by our groups were analyzed for GSTO1-1 levels and polymorphisms. For comparison, a model of lung inflammation in CFTR-knock out mice was also used. RESULTS: Our data document that soluble GSTO1-1 can be found in the airways of CF patients and correlates with inflammatory parameters such as neutrophilic elastase and the chemokine IL-8. A negative correlation was found between GSTO1-1 levels and the spirometric parameter FEV1 and the FEV1/FVC ratio. Additionally, the A140D polymorphism of GSTO1-1 was associated with lower levels of the antiinflammatory mediators PGE2 and 15(S)-HETE, and with lower values of the FEV1/FVC ratio in CF subjects with the homozygous CFTR ΔF508 mutation. CONCLUSIONS: Our data suggest that extracellular GSTO1-1 and its polymorphysms could have a biological and clinical significance in CF. Pathophysiological functions of GSTOs are far from being completely understood, and more studies are required to understand the role(s) of extracellular GSTO1-1 in inflamed tissues.


Carrier Proteins/genetics , Cystic Fibrosis/enzymology , Cystic Fibrosis/genetics , Glutathione Transferase/genetics , Polymorphism, Single Nucleotide , Animals , Cystic Fibrosis/physiopathology , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Respiratory Function Tests , Severity of Illness Index
7.
Vet Parasitol ; 297: 109114, 2021 Sep.
Article En | MEDLINE | ID: mdl-32386865

The glutathione-S-transferases omega (GSTO) are multifunctional enzymes involved in cellular defense. During the nurse cell (NC) formation in Trichinella spiralis infection, the structural and regulatory genes of the skeletal muscle cell are downregulated and a new phenotype is acquired which advances parasite growth and survival. Previous studies showed that the GSTO1 is overexpressed in the NC during T. spiralis infection. To clarify the role of GSTO1 during NC formation, we evaluated the production of this enzyme by immunohistochemistry (IHC) in the diaphragms of mice experimentally infected with T. spiralis at 15, 28 and 60 days post infection (dpi); phosphorylation of Akt (p-Akt) and JNK1 (p-JNK1) were also evaluated. Furthermore, we evaluated the in vitro effects of T. spiralis excretory/secretory (ES) products from muscle larvae on specific functions (viability, proliferative response, apoptosis) in two cell lines (HeLa and U937), as well as its ability to induce GSTO1, p-AkT, p-ERK1/2 and p-JNK1. Results showed that GSTO1 was elevated in NC present in the diaphragms of T. spiralis experimentally infected mice at 15 dpi and progressively increased up to 60 dpi. The activation pattern of Akt in NC was similar to that of GSTO1, whereas JNK1 was never phosphorylated. ES induced a dose-dependent proliferative response in U937 cells, at 24 h and 48 h of treatment, but not in HeLa cells. However, after 72 h following treatment, significant cell death was observed in both cell lines at all doses. The apoptotic index (a.i.) was significantly higher than in untreated cells in both cell lines but only at the highest concentration of ES tested. Furthermore, Western Blots revealed that cells treated with ES for 24, 48 and 72 h, exhibited time-dependent overexpression of GSTO1, whereas p-Akt appeared only after 24 h of treatment. The p-ERK-1/2 peaked at 24 h then declined at 48 h and 72 h after treatment; however, it remained significantly higher than in untreated cells. No changes were observed in p-JNK1 at 24 and 48 h after treatment but a sharp increase in p-JNK1 was observed at 72 h. Also in HeLa cells, ES induced a small but significant increase in GSTO1 expression after 24 and 48 h of treatment where p-JNK1 was present only after 72 h of treatment. In conclusion, T. spiralis ES can reproduce in vitro the modifications observed inside the NC during experimental infection in mice.


Carrier Proteins/metabolism , Glutathione Transferase/metabolism , Trichinellosis , Animals , Antigens, Helminth , Diaphragm , HeLa Cells , Helminth Proteins , Humans , Larva , Mice , Trichinella spiralis , Trichinellosis/veterinary
8.
Food Chem Toxicol ; 138: 111205, 2020 Apr.
Article En | MEDLINE | ID: mdl-32074490

Alternative therapies with new drugs are needed because the clinical efficacy of conventional chemotherapy is often reduced due to collateral effects. Many natural products of plant origin, including essential oils (EOs) have proved to be effective in prevention and therapy of several diseases such as bacterial infections, chronic diseases and cancer. In the present study, we investigated some biological activities of EOs extracted from seven plants: Rosmarinus officinalis, Salvia somalensis, Thymus vulgaris, Achillea millefolium, Helichrysum italicum, Pistacia lentiscus, Myrtus communis. In particular, we evaluated the cytotoxic and genotoxic activity using the cytochalasin B-blocked micronucleus assay (CBMN) in human peripheral lymphocytes, cytotoxicity in a human ovarian carcinoma cell line (A2780), and the estrogenic/antiestrogenic activity using a yeast strain expressing the human estrogen receptor alpha (ERα). Our results show that most EOs can have a strong cytotoxic and a slight/moderate genotoxic effect on human peripheral lymphocytes, and also a pronounced cytotoxic effect in A2780 cells. In addition, some EOs seem to have a marked antiestrogenic activity that could potentially perturb the estrogen-dependent tissues.


Antineoplastic Agents/pharmacology , Estrogen Antagonists/pharmacology , Oils, Volatile/pharmacology , Phytochemicals/pharmacology , Plant Oils/pharmacology , Achillea/chemistry , Adult , Cell Line, Tumor , DNA Damage/drug effects , Helichrysum/chemistry , Humans , Micronucleus Tests , Myrtus/chemistry , Pistacia/chemistry , Rosmarinus , Salvia/chemistry , Thymus Plant/chemistry
9.
Toxicol Sci ; 177(2): 476-482, 2020 10 01.
Article En | MEDLINE | ID: mdl-31388672

Asbestos is the main causative agent of malignant pleural mesothelioma. The variety known as crocidolite (blue asbestos) owns the highest pathogenic potential, due to the dimensions of its fibers as well as to its content of iron. The latter can in fact react with macrophage-derived hydrogen peroxide in the so called Fenton reaction, giving rise to highly reactive and mutagenic hydroxyl radical. On the other hand, hydroxyl radical can as well originate after thiol-dependent reduction of iron, a process capable of starting its redox cycling. Previous studies showed that glutathione (GSH) is one such thiol, and that cellular gamma-glutamyltransferase (GGT) can efficiently potentiate GSH-dependent iron redox cycling and consequent oxidative stress. As GGT is expressed in macrophages and is released upon their activation, the present study was aimed at verifying the hypothesis that GSH/GGT-dependent redox reactions may participate in the oxidative stress following the activation of macrophages induced by crocidolite asbestos. Experiments in acellular systems confirmed that GGT-mediated metabolism of GSH can potentiate crocidolite-dependent production of superoxide anion, through the production of highly reactive dipeptide thiol cysteinyl-glycine. Cultured THP-1 macrophagic cells, as well as isolated monocytes obtained from healthy donors and differentiated to macrophages in vitro, were investigated as to their expression of GGT and the effects of exposure to crocidolite. The results show that crocidolite asbestos at subtoxic concentrations (50-250 ng/1000 cells) can upregulate GGT expression, which raises the possibility that macrophage-initiated, GSH/GGT-dependent pro-oxidant reactions may participate in the pathogenesis of tissue damage and inflammation consequent to crocidolite intoxication.


Asbestos, Crocidolite , Asbestos , Asbestos, Crocidolite/toxicity , Humans , Macrophages , Reactive Oxygen Species , gamma-Glutamyltransferase
10.
Sci Rep ; 9(1): 891, 2019 01 29.
Article En | MEDLINE | ID: mdl-30696905

L-γ-Glutamyl-p-nitroanilide (GPNA) is widely used to inhibit the glutamine (Gln) transporter ASCT2, but recent studies have demonstrated that it is also able to inhibit other sodium-dependent and independent amino acid transporters. Moreover, GPNA is a well known substrate of the enzyme γ-glutamyltransferase (GGT). Our aim was to evaluate the effect of GGT-mediated GPNA catabolism on cell viability and Gln transport. The GGT-catalyzed hydrolysis of GPNA produced cytotoxic effects in lung cancer A549 cells, resulting from the release of metabolite p-nitroaniline (PNA) rather than from the inhibition of Gln uptake. Interestingly, compounds like valproic acid, verapamil and reversan were able to increase the cytotoxicity of GPNA and PNA, suggesting a key role of intracellular detoxification mechanisms. Our data indicate that the mechanism of action of GPNA is more complex than believed, and further confirm the poor specificity of GPNA as an inhibitor of Gln transport. Different factors may modulate the final effects of GPNA, ranging from GGT and ASCT2 expression to intracellular defenses against xenobiotics. Thus, other strategies - such as a genetic suppression of ASCT2 or the identification of new specific inhibitors - should be preferred when inhibition of ASCT2 function is required.


Glutamine/analogs & derivatives , Neoplasms/metabolism , gamma-Glutamyltransferase/metabolism , Acetylcysteine/metabolism , Acetylcysteine/pharmacology , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Survival , Enzyme Activation , Glutamine/adverse effects , Glutamine/chemistry , Glutamine/metabolism , Glutamine/toxicity , Humans , Hydrolysis , Metabolic Detoxication, Phase I , Reactive Oxygen Species/metabolism
11.
Oncol Rep ; 39(5): 2225-2234, 2018 May.
Article En | MEDLINE | ID: mdl-29517103

Lenvatinib is an oral, multitargeted tyrosine kinase inhibitor (TKI) of VEGFR1-VEGFR3, FGFR1-FGFR4, PDGFRα, RET and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) signaling networks involved in tumor angiogenesis. We have evaluated the antitumor activity of lenvatinib in primary anaplastic thyroid cancer (ATC) cells, in the human cell line 8305C (undifferentiated thyroid cancer) and in an ATC-cell line (AF). The AF cell line was obtained from the primary ATC cultures and was the one that grew over 50 passages. The effect of lenvatinib (1 and 100 nM; and 1, 10, 25 and 50 µM) was investigated in primary ATC, 8305C and AF cells as well as in AF cells in CD nu/nu mice. Lenvatinib significantly reduced ATC cell proliferation (P<0.01, ANOVA) and increased the percentage of apoptotic ATC cells (P<0.001, ANOVA). Furthermore, lenvatinib inhibited migration (P<0.01) and invasion (P<0.001) in ATC. In addition, lenvatinib inhibited EGFR, AKT and ERK1/2 phosphorylation and downregulated cyclin D1 in the ATC cells. Lenvatinib also significantly inhibited 8305C and AF cell proliferation, increasing apoptosis. AF cells were subcutaneously injected into CD nu/nu mice and tumor masses were observed 20 days later. Tumor growth was significantly inhibited by lenvatinib (25 mg/kg/day), as well as the expression of VEGF-A and microvessel density in the AF tumor tissues. In conclusion, the antitumor and antiangiogenic activities of lenvatinib may be promising for the treatment of anaplastic thyroid cancer, and may consist a basis for future clinical therapeutic applications.


Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , MAP Kinase Signaling System/drug effects , Mice , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
12.
Oncol Rep ; 39(5): 2306-2314, 2018 May.
Article En | MEDLINE | ID: mdl-29517106

The antitumor activity of vandetanib [a multiple signal transduction inhibitor including the RET tyrosine kinase, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor (VEGFR), ERK and with antiangiogenic activity], in primary anaplastic thyroid cancer (ATC) cells, in the human cell line 8305C [undifferentiated thyroid cancer (TC)] and in an ATC­cell line (AF), was investigated in the present study. Vandetanib (1 and 100 nM; 1, 10, 25 and 50 µM) was tested by WST­1, apoptosis, migration and invasion assays: in primary ATC cells, in the 8305C continuous cell line, and in AF cells; and in 8305C cells in CD nu/nu mice. Vandetanib significantly reduced ATC cell proliferation (P<0.01, ANOVA), induced apoptosis dose­dependently (P<0.001, ANOVA), and inhibited migration (P<0.01) and invasion (P<0.001). Furthermore, vandetanib inhibited EGFR, AKT and ERK1/2 phosphorylation and downregulated cyclin D1 in ATC cells. In 8305C and AF cells, vandetanib significantly inhibited the proliferation, inducing also apoptosis. 8305C cells were injected subcutaneously in CD nu/nu mice and tumor masses became detectable after 30 days. Vandetanib (25 mg/kg/day) significantly inhibited tumor growth and VEGF­A expression and microvessel density in 8305C tumor tissues. In conclusion, the antitumor and antiangiogenic activity of vandetanib is very auspicious in ATC, opening the way to a future clinical evaluation.


Antineoplastic Agents/administration & dosage , Piperidines/administration & dosage , Quinazolines/administration & dosage , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin D1/metabolism , Dose-Response Relationship, Drug , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , In Vitro Techniques , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Piperidines/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Quinazolines/pharmacology , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
13.
Immunol Res ; 66(6): 710-722, 2018 12.
Article En | MEDLINE | ID: mdl-30617967

Our study demonstrates that (C-X-C motif) ligand 9 and 11 (CXCL9, CXCL11) chemokines were absent basally in non-neoplastic thyroid (TFC) and papillary thyroid carcinoma (PTC) cells. Interferon (IFN)γ induced the chemokine secretion in TFC and PTC, while tumor necrosis factor (TNF)α induced it only in PTC. IFNγ+TNFα induced a synergistic chemokines release in PTC, and at a lower level in TFC. Peroxisome proliferator-activated receptor (PPAR)γ agonists suppressed dose-dependently IFNγ+TNFα-induced chemokine release in TFC, while stimulated it in PTC. PPARγ knocking down, by RNA interference technique in PTC cells, abolished the effect of PPARγ agonists on chemokines release. In PTC cells, PPARγ agonists reduced proliferation, and CXCL9 or CXCL11 (100 and 500 pg/mL) reduced proliferation and migration (P < 0.01, for all). In conclusion, in PTC cells: (a) IFNγ+TNFα induced a marked release of CXCL9 and CXCL11; (b) PPARγ agonists stimulated CXCL9 and CXCL11 secretion, while inhibited proliferation; (c) CXCL9 and CXCL11 inhibited proliferation and migration. The use of CXCL9 or CXCL11 as antineoplastic agents in PTC remains to be explored. HIGHLIGHTS: • IFNγ and IFNγ+TNFα induce dose-dependently CXCL9 (and less CXCL11) in PTC cells. • Rosi and Pio dose-dependently inhibit the PTC cells proliferation. • Rosi and Pio (at variance of normal TFC) stimulate CXCL9 or CXCL11 secretion. • CXCL9 or CXCL11 induce a significant antiproliferative effect in PTC cells. • Chemokines induced by IFNγ (CXCL9 or CXCL11) inhibit migration in PTC cells.


Chemokines/immunology , Cytokines/immunology , Thyroid Cancer, Papillary/immunology , Animals , Cell Movement/immunology , Cell Proliferation/physiology , Humans
14.
Article En | MEDLINE | ID: mdl-30619094

Anaplastic thyroid carcinoma (ATC) is a malignant tumor of the thyroid gland, infrequent but with a very poor prognosis, as it rapidly causes death (mean survival of about 6 months). ATC treatment includes a multimodal protocol consisting of surgery, chemotherapy (doxorubicin and cisplatin), and hyperfractionated accelerated external beam radiotherapy (median patient survival of 10 months). For this reason, the identification of an effective systemic treatment for ATC would be a major advance in the management of this deadly thyroid cancer. The opportunity to test the sensitivity to different drugs of primary cells from ATC (pATC) cultures, obtained from each patients, could improve the effectiveness of the treatment. Then, the administration of inactive therapeutics could be avoided. Our aim is to investigate the antineoplastic effect of two tyrosine kinase inhibitors (TKIs; lenvatinib, vandetanib) in pATC obtained both from biopsy (biop-pATC), and from fine needle aspiration (FNA-pATC). The antiproliferative activity of lenvatinib and vandetanib was evaluated in 6 ATC patients, on biop-pATC, such as on FNA-pATC. A significant reduction of proliferation (obtained by WST-1 assay) vs. control was shown with lenvatinib and vandetanib in FNA-pATC, as well as in biop-pATC. The percentage of apoptosis in FNA-pATC, or biop-pATC, increased with both compounds dose-dependently. pATC cells from FNA, or biopsy, had a similar sensitivity to lenvatinib and vandetanib. In conclusion, primary cells (biop-pATC or FNA-pATC) have a similar sensitivity to TKIs, and lenvatinib and vandetanib are effective in reducing cell growth, increasing apoptosis in ATC. The possibility to test the sensitivity to different TKIs in each patient could open the way to personalized treatments, avoiding the administration of ineffective, and potentially dangerous, drugs.

15.
Anticancer Agents Med Chem ; 18(3): 458-466, 2018.
Article En | MEDLINE | ID: mdl-28730964

BACKGROUND AND OBJECTIVE: Chemokine (C-C motif) ligand (CCL)2, the prototype Th2 chemokine, is secreted by tumor cells, and has growth promoting effects. Whether CCL2 protumorigenic activities will be validated, then CCL2 and its receptor CCR2 may be therapeutic targets in cancer. METHODS: We tested in "primary human anaplastic thyroid carcinoma (ATC) cells" (ANA) versus "normal thyroid follicular cells" (TFC): a) CCL2 secretion basally, after IFN-γ and/or TNF-α stimulation; b) PPARγ activation by thiazolidinediones (TZDs), rosiglitazone or pioglitazone, on CCL2 secretion, and on proliferation and apoptosis in ANA. RESULTS: ANA produced basally CCL2, at a higher level versus TFC. IFN-γ or TNF-α dose-dependently induced the CCL2 release in 3/6 or 5/6 ANA, respectively, but in all TFC. IFN-γ+TNF-α induced a synergistic release of CCL2 in all TFC, but only in 1/6 ATC. TZDs exerted an inhibition of CCL2 release in 3/6 ANA, while had no effect in TFC. Pioglitazone inhibition of ANA proliferation was not associated with the effect on CCL2; NF-κB and ERK1/2 were basally activated in ANA, increased by IFN-γ+TNF-α, and pioglitazone inhibited IFN- γ+TNF-α activation. CCL2 serum levels were higher in 6 ATC patients than in 5 controls (813±345 versus 345±212, pg/mL; respectively; P<0.01, ANOVA). CONCLUSION: ANA produce CCL2 basally and after cytokines stimulation, with an extremely variable pattern of modulation, suggesting different types of deregulation in the chemokine modulation. Serum CCL2 is increased in ATC patients. Further studies will be necessary to evaluate if CCL2 might be used as a marker in the followup of ATC patients.


Chemokine CCL2/metabolism , Cytokines/metabolism , PPAR gamma/metabolism , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/metabolism , Apoptosis , Cell Proliferation , Cell Survival , Chemokine CCL2/analysis , Enzyme-Linked Immunosorbent Assay , Humans , Thyroid Carcinoma, Anaplastic/diagnosis , Thyroid Neoplasms/diagnosis , Tumor Cells, Cultured
16.
Environ Mol Mutagen ; 58(7): 477-484, 2017 08.
Article En | MEDLINE | ID: mdl-28714549

In a recent study, we showed that lymphocytes of obese Italian children/adolescents displayed levels of double strand breaks (DSB), assayed as serine 139-phosphorylated histone H2AX (γ-H2AX), about eightfold higher than normal weight controls, and that 30% of this damage-generated micronuclei. These findings suggested that obese children could be at increased risk of obesity-mediated cancer later in life. We therefore aimed to assess the level of γ-H2AX in a genetic animal model of obesity (Zucker rat) to identify a genotoxic/carcinogenic risk in some organs. The DSB marker was studied in 3- to 4-week-old rats and in 9- to 13-week-old rats. Paraffin-embedded sections of heart, thyroid, liver, pancreas, lung, kidney, esophagus, and gut from the fa-/fa- (obese) and the fa+/fa- (lean) control animals were processed for immunohistochemistry detection of γ-H2AX. Pancreas (0.0624 ± 0.0195), lung (0.1197 ± 0.0217), esophagus (0.1230 ± 0.0351), kidney (0.1546 ± 0.0149), and gut (0.1724 ± 0.0352) of 9- to 13-week-old obese rats showed a higher proportion of γ-H2AX-positive nuclei, than their lean counterparts (0.0092 ± 0.0033, 0.0416 ± 0.0185, 0.0368 ± 0.0088, 0.0686 ± 0.0318, and 0.0703 ± 0.0239, respectively). No difference was seen in the 3- to 4-week-old age group with regard to obesity, indicating that the DNA damage increased with older age of the rats. We hypothesize that the organs of the obese animals showing high levels of DSB could represent target tissues for the development of obesity-related cancers. Environ. Mol. Mutagen. 58:477-484, 2017. © 2017 Wiley Periodicals, Inc.


Aging/genetics , DNA Breaks, Double-Stranded , Histones/metabolism , Neoplasms/genetics , Obesity/genetics , Phosphoproteins/metabolism , Aging/blood , Aging/metabolism , Animals , Body Weight , Disease Models, Animal , Histones/genetics , Lymphocytes/metabolism , Lymphocytes/pathology , Neoplasms/blood , Neoplasms/metabolism , Obesity/blood , Obesity/metabolism , Organ Specificity , Phosphoproteins/genetics , Rats, Zucker
17.
Mutat Res ; 789: 39-47, 2016 07.
Article En | MEDLINE | ID: mdl-27050754

Bystander effect is a known radiobiological effect, widely described using ionizing radiations and which, more recently, has also been related to chemical mutagens. In this study, we aimed to assess whether or not a bystander response can be induced in cultured human peripheral lymphocytes by vincristine, a chemotherapeutic mutagen acting as spindle poison, and by mitomycin-C, an alkylating agent already known to induce this response in human lymphoblastoid cells. Designing a modified ad hoc protocol for the cytokinesis blocked micronucleus (MN) assay, we detected the presence of a dose-dependent bystander response in untreated cultures receiving the conditioned medium (CM) from mitomycin-C (MMC) or vincristine (VCR) treated cultures. In the case of MMC, MN frequencies, expressed as micronucleated binucleates, were: 13.5±1.41 at 6µM, 22±2.12 at 12µM or 28.25±5.13 at 15µM vs. a control value of 4.75±1.59. MN levels for VCR, expressed as micronucleated mononucleates were: 2.75±0.88 at 0.0µM, 27.25±2.30 at 0.4µM, 46.25±1.94 at 0.8µM, 98.25±7.25 at 1.6µM. To verify that no mutagen residual was transferred to recipient cultures together with the CM, we evaluated MN levels in cultures receiving the medium immediately after three washings following the chemical treatment (unconditioned medium). We further confirmed these results using a cell-mixing approach where untreated lymphocytes were co-cultured with donor cells treated with an effect-inducing dose of MMC or VCR. A distinct production pattern of both reactive oxygen species and soluble mediator proteins by treated cells may account for the differences observed in the manifestation of the bystander effect induced by VCR. In fact, we observed an increased level of ROS, IL-32 and TGF-ß in the CM from VCR treated cultures, not present in MMC treated cultures.


Bystander Effect/drug effects , Lymphocytes/drug effects , Micronuclei, Chromosome-Defective/chemically induced , Vincristine/pharmacology , Adult , Bystander Effect/genetics , Cells, Cultured , Coculture Techniques , Culture Media, Conditioned , Dose-Response Relationship, Drug , Female , Humans , In Situ Hybridization, Fluorescence , Interleukins/metabolism , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Micronucleus Tests/methods , Microscopy, Fluorescence , Mitomycin/pharmacology , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/metabolism , Young Adult
18.
Surgery ; 156(5): 1167-76, 2014 Nov.
Article En | MEDLINE | ID: mdl-25151558

BACKGROUND: We report the antineoplastic and anti-angiogenic activity of the pyrazolo[3,4-d]pyrimidine derivative CLM3 and the cyclic amide CLM94, both multiple tyrosine kinase inhibitors (TKIs), in human primary medullary thyroid cancer (P-MTC) cells, and in vitro in the medullary thyroid cancer (MTC) cell lines TT (harboring a RET C634W activating mutation) and MZ-CRC-1 (carrying the MEN2B RET mutation Met891Thr). METHODS: The antiproliferative and proapoptotic effects of CLM3 and CLM94 (1, 5, 10, 30, and 50 µmol/L) were tested in P-MTC cells obtained at operation, and in TT cells. In addition, the antiproliferative effects of CLM3 and CLM94 (0.005, 0.05, 0.5, and 5 µmol/L) were tested in TT and MZ-CRC-1 cells after 7 days of treatment to compare the results with those previously reported in the literature. RESULTS: CLM3 and CLM94 (30 or 50 µmol/L) inhibited (P < .01) the proliferation of the P-MTC cells, TT cells, and MZ-CRC-1 cells and increased the level of apoptosis in a dose-dependent manner at 10, 30, and 50 µmol/L (P < .001), while having no effect on migration or invasion. The inhibition of proliferation by CLM3 and CLM94 was similar among P-MTC cells with/without RET mutations, and similar effects were observed regarding the increased level of apoptosis. Furthermore, CLM3 and CLM94 significantly decreased vascular endothelial growth factor-A expression in TT cells. CONCLUSION: The antitumor activities of the multiple TKIs CLM3 and CLM94 were demonstrated in both primary MTC cultures as well as 2 established MTC cell lines in vitro, opening an avenue for future clinical evaluations.


Benzamides/therapeutic use , Carcinoma, Medullary/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Saccharin/analogs & derivatives , Thyroid Neoplasms/drug therapy , Apoptosis/drug effects , Benzamides/pharmacology , Carcinoma, Neuroendocrine , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Drug Screening Assays, Antitumor , Humans , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Saccharin/pharmacology , Saccharin/therapeutic use , Vascular Endothelial Growth Factor A/antagonists & inhibitors
19.
Mol Cell Endocrinol ; 393(1-2): 56-64, 2014 Aug 05.
Article En | MEDLINE | ID: mdl-24931161

CLM29 (a pyrazolo[3,4-d]pyrimidine, that inhibits RET, epidermal growth factor receptor, vascular endothelial growth factor receptor, and has an anti-angiogenic activity) has anti-neoplastic activity in papillary dedifferentiated thyroid cancer. Here we tested CLM29 in medullary thyroid cancer (MTC), in primary MTC cells (P-MTC) obtained at surgery, and in TT cells harboring (C634W) RET mutation. CLM29 (10, 30, 50 µM) inhibited significantly (P<0.001) the proliferation, and increased the percentage of apoptotic P-MTC, TT and human dermal microvascular endothelial cells. The inhibition of proliferation by CLM29 was similar in P-MTC cells with/without RET mutation. TT cells were injected sc in CD nu/nu mice, and tumor masses became detectable between 20 and 30 days after xenotransplantation; CLM29 (50mg/kg/die) reduced significantly tumor growth and weight, and microvessel density. The anti-tumor activity of CLM29 has been shown in MTC in vitro, and in vivo, opening the way to a future clinical evaluation.


Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Thyroid Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Neuroendocrine , Cell Proliferation/drug effects , Humans , Mice , Mice, Nude , Real-Time Polymerase Chain Reaction , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A/metabolism
20.
Nat Prod Commun ; 9(4): 477-80, 2014 Apr.
Article En | MEDLINE | ID: mdl-24868860

Bituminaria bituminosa L. is known for producing several compounds with considerable pharmaceutical interest, such as phenylpropanoids, furanocoumarins and pterocarpans. In vitro cultures of seedlings, shoots, and callus have been produced to obtain plant materials useful for the production of these metabolites. The secondary metabolite profile was evaluated by HPLC-DAD. The extracts of all the in vitro material contained the flavonoid daidzein, while plicatin B, erybraedin C and bitucarpin A were found only in the extracts of the in vitro shoots and in wild shoots. The furanocoumarins angelicin and psoralen were found in in vivo and in vitro plants, but in the callus were not detectable. The extracts were also tested for cytotoxic activity in HeLa cell culture; the highest level of cytotoxicity was found in in vitro shoot extracts.


Fabaceae/metabolism , Furocoumarins/metabolism , Isoflavones/metabolism , Pterocarpans/metabolism , Furocoumarins/chemistry , Furocoumarins/pharmacology , Isoflavones/chemistry , Isoflavones/pharmacology , Plant Leaves/metabolism , Plant Roots , Plant Shoots/metabolism , Pterocarpans/chemistry , Pterocarpans/pharmacology , Tissue Culture Techniques
...