RESUMEN
Conventional CD4+ T (Tconv) lymphocytes play important roles in tumor immunity; however, their contribution to tumor elimination remains poorly understood. Here, we describe a subset of tumor-infiltrating Tconv cells characterized by the expression of CD39. In several mouse cancer models, we observed that CD39+ Tconv cells accumulated in tumors but were absent in lymphoid organs. Compared to tumor CD39- counterparts, CD39+ Tconv cells exhibited a cytotoxic and exhausted signature at the transcriptomic level, confirmed by high protein expression of inhibitory receptors and transcription factors related to the exhaustion. Additionally, CD39+ Tconv cells showed increased production of IFNγ, granzyme B, perforin and CD107a expression, but reduced production of TNF. Around 55% of OVA-specific Tconv from B16-OVA tumor-bearing mice, expressed CD39. In vivo CTLA-4 blockade induced the expansion of tumor CD39+ Tconv cells, which maintained their cytotoxic and exhausted features. In breast cancer patients, CD39+ Tconv cells were found in tumors and in metastatic lymph nodes but were less frequent in adjacent non-tumoral mammary tissue and not detected in non-metastatic lymph nodes and blood. Human tumor CD39+ Tconv cells constituted a heterogeneous cell population with features of exhaustion, high expression of inhibitory receptors and CD107a. We found that high CD4 and ENTPD1 (CD39) gene expression in human tumor tissues correlated with a higher overall survival rate in breast cancer patients. Our results identify CD39 as a biomarker of Tconv cells, with characteristics of both exhaustion and cytotoxic potential, and indicate CD39+ Tconv cells as players within the immune response against tumors.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Linfocitos T Reguladores/metabolismo , Antígeno CTLA-4 , Linfocitos T CD4-Positivos , Neoplasias de la Mama/metabolismoRESUMEN
IL-17 immune responses in cancer are controversial, with both tumor-promoting and tumor-repressing effects observed. To clarify the role of IL-17 signaling in cancer progression, we used syngeneic tumor models from different tissue origins. We found that deficiencies in host IL-17RA or IL-17A/F expression had varying effects on the in vivo growth of different solid tumors including melanoma, sarcoma, lymphoma, and leukemia. In each tumor type, the absence of IL-17 led to changes in the expression of mediators associated with inflammation and metastasis in the tumor microenvironment. Furthermore, IL-17 signaling deficiencies in the hosts resulted in decreased anti-tumor CD8+ T cell immunity and caused tumor-specific changes in several lymphoid cell populations. Our findings were associated with distinct patterns of IL-17A/F cytokine and receptor subunit expression in the injected tumor cell lines. These patterns affected tumor cell responsiveness to IL-17 and downstream intracellular signaling, leading to divergent effects on cancer progression. Additionally, we identified IL-17RC as a critical determinant of the IL-17-mediated response in tumor cells and a potential biomarker for IL-17 signaling effects in tumor progression. Our study offers insight into the molecular mechanisms underlying IL-17 activities in cancer and lays the groundwork for developing personalized immunotherapies.
Asunto(s)
Neoplasias , Receptores de Interleucina-17 , Humanos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17 , Transducción de Señal , Linfocitos T CD8-positivos , Inflamación , Neoplasias/genéticaRESUMEN
Senescent T cells have been described during aging, chronic infections, and cancer; however, a comprehensive study of the phenotype, function, and transcriptional program of this T cell population in breast cancer (BC) patients is missing. Compared to healthy donors (HDs), BC patients exhibit an accumulation of KLRG-1+CD57+ CD4+ and CD8+ T cells in peripheral blood. These T cells infiltrate tumors and tumor-draining lymph nodes. KLRG-1+CD57+ CD4+ and CD8+ T cells from BC patients and HDs exhibit features of senescence, and despite their inhibitory receptor expression, they produce more effector cytokines and exhibit higher expression of Perforin, Granzyme B, and CD107a than non-senescent subsets. When compared to blood counterparts, tumor-infiltrating senescent CD4+ T cells show similar surface phenotype but reduced cytokine production. Transcriptional profiling of senescent CD4+ T cells from the peripheral blood of BC patients reveals enrichment in genes associated with NK or CD8+-mediated cytotoxicity, TCR-mediated stimulation, and cell exhaustion compared to non-senescent T cells. Comparison of the transcriptional profile of senescent CD4+ T cells from peripheral blood of BC patients with those of HDs highlighted marked similarities but also relevant differences. Senescent CD4+ T cells from BC patients show enrichment in T-cell signaling, processes involved in DNA replication, p53 pathways, oncogene-induced senescence, among others compared to their counterparts in HDs. High gene expression of CD4, KLRG-1, and B3GAT1 (CD57), which correlates with increased overall survival for BC patients, underscores the usefulness of the evaluation of the frequency of senescent CD4+ T cells as a biomarker in the follow-up of patients.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Senescencia Celular , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias de la Mama/etiología , Antígenos CD57/metabolismo , Estudios de Casos y Controles , Senescencia Celular/genética , Senescencia Celular/inmunología , Citotoxicidad Inmunológica , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Lectinas Tipo C/metabolismo , Recuento de Linfocitos , Linfocitos Infiltrantes de Tumor/patología , Receptores Inmunológicos/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patologíaRESUMEN
Stat3 is constitutively activated in several tumor types and plays an essential role in maintaining their malignant phenotype and immunosupression. To take advantage of the promising antitumor activity of Stat3 targeting, it is vital to understand the mechanism by which Stat3 regulates both cell autonomous and non-autonomous processes. Here, we demonstrated that turning off Stat3 constitutive activation in different cancer cell types induces senescence, thus revealing their Stat3 addiction. Taking advantage of the senescence-associated secretory phenotype (SASP) induced by Stat3 silencing (SASP-siStat3), we designed an immunotherapy. The administration of SASP-siStat3 immunotherapy induced a strong inhibition of triple-negative breast cancer and melanoma growth associated with activation of CD4 + T and NK cells. Combining this immunotherapy with anti-PD-1 antibody resulted in survival improvement in mice bearing melanoma. The characterization of the SASP components revealed that type I IFN-related mediators, triggered by the activation of the cyclic GMP-AMP synthase DNA sensing pathway, are important for its immunosurveillance activity. Overall, our findings provided evidence that administration of SASP-siStat3 or low dose of Stat3-blocking agents would benefit patients with Stat3-addicted tumors to unleash an antitumor immune response and to improve the effectiveness of immune checkpoint inhibitors.
Asunto(s)
Melanoma , Neoplasias de la Mama Triple Negativas , Animales , Senescencia Celular , Humanos , Inmunoterapia , Ratones , Dependencia del Oncogén , Factor de Transcripción STAT3/genéticaRESUMEN
Clusterin is a glycoprotein able to mediate different physiological functions such as control of complement activation, promotion of unfolded protein clearance and modulation of cell survival. Clusterin is overexpressed in many types of cancers and a large body of evidence suggests that it promotes carcinogenesis and tumor progression. We have previously described a novel clusterin glycoform present in human semen, but not in serum, highly enriched in terminal fucose motifs. Here we show that human luminal breast cancer (LBC) clusterin also bears terminal fucosylated glycans, conferring clusterin the ability to interact with DC-SIGN, a C-type lectin receptor expressed by myeloid cells. This clusterin glycosylation pattern was absent or diminished in non-involved juxtatumoral tissue, suggesting that fucosylated clusterin might represent a cancer associated glycoform. We also found that DC-SIGN is expressed by luminal breast cancer intratumoral macrophages. Moreover, experiments performed in vitro using semen fucosylated clusterin and monocyte derived macrophages showed that the interaction of semen clusterin with DC-SIGN promoted a proangiogenic profile, characterized by a high production of VEGF, IL-8 and TNF-α. Our results reveal an unexpected complexity on the structure and function of secretory clusterin produced by tumors and suggest that fucosylated clusterin produced by luminal breast cancer cells might play a role in tumor progression by promoting the release of pro-angiogenic factors by intratumoral macrophages.
RESUMEN
An important challenge in cancer immunotherapy is to expand the number of patients that benefit from immune checkpoint inhibitors (CI), a fact that has been related to the pre-existence of an efficient anti-tumor immune response. Different strategies are being proposed to promote tumor immunity and to be used in combined therapies with CI. Recently, we reported that intratumoral administration of naked poly A:U, a dsRNA mimetic empirically used in early clinical trials with some success, delays tumor growth and prolongs mice survival in several murine cancer models. Here, we show that CD103+ cDC1 and, to a much lesser extent CD11b+ cDC2, are the only populations expressing TLR3 at the tumor site, and consequently could be potential targets of poly A:U. Upon poly A:U administration these cells become activated and elicit profound changes in the composition of the tumor immune infiltrate, switching the immune suppressive tumor environment to anti-tumor immunity. The sole administration of naked poly A:U promotes striking changes within the lymphoid compartment, with all the anti-tumoral parameters being enhanced: a higher frequency of CD8+ Granzyme B+ T cells, (lower Treg/CD8+ ratio) and an important expansion of tumor-antigen specific CD8+ T cells. Also, PD1/PDL1 showed an increased expression indicating that neutralization of this axis could be exploited in combination with poly A:U. Our results shed new light to promote further assays in this dsRNA mimetic to the clinical field.
Asunto(s)
Antígenos CD/inmunología , Células Dendríticas/inmunología , Cadenas alfa de Integrinas/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Experimentales/inmunología , Receptor Toll-Like 3/inmunología , Microambiente Tumoral/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos T CD8-positivos/patología , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ratones Transgénicos , Neoplasias Experimentales/patología , Poli A-U/farmacología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patologíaRESUMEN
Intestinal and free-living protozoa, such as Giardia lamblia, express a dense coat of variant-specific surface proteins (VSPs) on trophozoites that protects the parasite inside the host's intestine. Here we show that VSPs not only are resistant to proteolytic digestion and extreme pH and temperatures but also stimulate host innate immune responses in a TLR-4 dependent manner. We show that these properties can be exploited to both protect and adjuvant vaccine antigens for oral administration. Chimeric Virus-like Particles (VLPs) decorated with VSPs and expressing model surface antigens, such as influenza virus hemagglutinin (HA) and neuraminidase (NA), are protected from degradation and activate antigen presenting cells in vitro. Orally administered VSP-pseudotyped VLPs, but not plain VLPs, generate robust immune responses that protect mice from influenza infection and HA-expressing tumors. This versatile vaccine platform has the attributes to meet the ultimate challenge of generating safe, stable and efficient oral vaccines.
Asunto(s)
Giardia lamblia/química , Vacunas contra la Influenza/inmunología , Proteínas de la Membrana/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Protozoarias/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Adyuvantes Inmunológicos , Administración Oral , Animales , Presentación de Antígeno/efectos de los fármacos , Bioingeniería/métodos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/virología , Femenino , Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Neuraminidasa/genética , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Estabilidad Proteica , Proteínas Protozoarias/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Trofozoítos/química , Vacunación , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genéticaRESUMEN
The IL-17 family contributes to host defense against many intracellular pathogens by mechanisms that are not fully understood. CD8+ T lymphocytes are key elements against intracellular microbes, and their survival and ability to mount cytotoxic responses are orchestrated by several cytokines. Here, we demonstrated that IL-17RA-signaling cytokines sustain pathogen-specific CD8+ T cell immunity. The absence of IL-17RA and IL-17A/F during Trypanosoma cruzi infection resulted in increased tissue parasitism and reduced frequency of parasite-specific CD8+ T cells. Impaired IL-17RA-signaling in vivo increased apoptosis of parasite-specific CD8+ T cells, while in vitro recombinant IL-17 down-regulated the pro-apoptotic protein BAD and promoted the survival of activated CD8+ T cells. Phenotypic, functional, and transcriptomic profiling showed that T. cruzi-specific CD8+ T cells derived from IL-17RA-deficient mice presented features of cell dysfunction. PD-L1 blockade partially restored the magnitude of CD8+ T cell responses and parasite control in these mice. Adoptive transfer experiments established that IL-17RA-signaling is intrinsically required for the proper maintenance of functional effector CD8+ T cells. Altogether, our results identify IL-17RA and IL-17A as critical factors for sustaining CD8+ T cell immunity to T. cruzi.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/metabolismo , Receptores de Interleucina-17/metabolismo , Transducción de Señal , Trypanosoma cruzi/inmunología , Traslado Adoptivo , Animales , Apoptosis , Supervivencia Celular , Enfermedad de Chagas/microbiología , Citocinas/metabolismo , Femenino , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunomodulación/genética , Interleucina-17/metabolismo , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Masculino , Ratones , Ratones Noqueados , Receptores de Interleucina-17/deficiencia , Transcripción GenéticaAsunto(s)
Linfocitos T CD8-positivos , Neoplasias , Apirasa , Humanos , Linfocitos Infiltrantes de TumorRESUMEN
Germinal centers (GC) are important sites for high-affinity and long-lived antibody induction. Tight regulation of GC responses is critical for maintaining self-tolerance. Here, we show that Galectin-3 (Gal-3) is involved in GC development. Compared with WT mice, Gal-3 KO mice have more GC B cells and T follicular helper cells, increased percentages of antibody-secreting cells and higher concentrations of immunoglobulins and IFN-γ in serum, and develop a lupus-like disease. IFN-γ blockade in Gal-3 KO mice reduces spontaneous GC formation, class-switch recombination, autoantibody production and renal pathology, demonstrating that IFN-γ overproduction sustains autoimmunity. The results from chimeric mice show that intrinsic Gal-3 signaling in B cells controls spontaneous GC formation. Taken together, our data provide evidence that Gal-3 acts directly on B cells to regulate GC responses via IFN-γ and implicate the potential of Gal-3 as a therapeutic target in autoimmunity.
Asunto(s)
Enfermedades Autoinmunes/inmunología , Galectina 3/deficiencia , Interferón gamma/inmunología , Animales , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/genética , Autoinmunidad , Linfocitos B/inmunología , Femenino , Galectina 3/genética , Galectina 3/inmunología , Centro Germinal/inmunología , Humanos , Interferón gamma/genética , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Ratones , Ratones Endogámicos C57BLRESUMEN
The ability of CD8+ T lymphocytes to eliminate tumors is limited by their ability to engender an immunosuppressive microenvironment. Here we describe a subset of tumor-infiltrating CD8+ T cells marked by high expression of the immunosuppressive ATP ecto-nucleotidase CD39. The frequency of CD39highCD8+ T cells increased with tumor growth but was absent in lymphoid organs. Tumor-infiltrating CD8+ T cells with high CD39 expression exhibited features of exhaustion, such as reduced production of TNF and IL2 and expression of coinhibitory receptors. Exhausted CD39+CD8+ T cells from mice hydrolyzed extracellular ATP, confirming that CD39 is enzymatically active. Furthermore, exhausted CD39+CD8+ T cells inhibited IFNγ production by responder CD8+ T cells. In specimens from breast cancer and melanoma patients, CD39+CD8+ T cells were present within tumors and invaded or metastatic lymph nodes, but were barely detectable within noninvaded lymph nodes and absent in peripheral blood. These cells exhibited an exhausted phenotype with impaired production of IFNγ, TNF, IL2, and high expression of coinhibitory receptors. Although T-cell receptor engagement was sufficient to induce CD39 on human CD8+ T cells, exposure to IL6 and IL27 promoted CD39 expression on stimulated CD8+ T cells from human or murine sources. Our findings show how the tumor microenvironment drives the acquisition of CD39 as an immune regulatory molecule on CD8+ T cells, with implications for defining a biomarker of T-cell dysfunction and a target for immunotherapeutic intervention.Significance: The tumor microenvironment elicits a subset of functionally exhausted CD8+ T cells by creating conditions that induce cell surface expression of CD39, an immunosuppressive molecule that can be therapeutically targeted to restore effector T-cell function. Cancer Res; 78(1); 115-28. ©2017 AACR.
Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Femenino , Humanos , Metástasis Linfática/inmunología , Metástasis Linfática/patología , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Melanoma/inmunología , Melanoma/patología , Ratones Endogámicos BALB C , Ratones Noqueados , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
We previously showed that Trypanosomacruzi infection in C57BL/6 mice results in a lethal infection linked to unbalanced pro- and anti-inflammatory mediators production. Here, we examined the dynamics of CD4(+)Foxp3(+) regulatory T (Treg) cells within this inflammatory and highly Th1-polarized environment. Treg cells showed a reduced proliferation rate and their frequency is progressively reduced along infection compared to effector T (Teff) cells. Also, a higher fraction of Treg cells showed a naïve phenotype, meanwhile Teff cells were mostly of the effector memory type. T. cruzi infection was associated with the production of pro- and anti-inflammatory cytokines, notably IL-27p28, and with the induction of T-bet and IFN-γ expression in Treg cells. Furthermore, endogenous glucocorticoids released in response to T. cruzi-driven immune activation were crucial to sustain the Treg/Teff cell balance. Notably, IL-2 plus dexamethasone combined treatment before infection was associated with increased Treg cell proliferation and expression of GATA-3, IL-4 and IL-10, and increased mice survival time. Overall, our results indicate that therapies aimed at specifically boosting Treg cells, which during T. cruzi infection are overwhelmed by the effector immune response, represent new opportunities for the treatment of Chagas disease, which is actually only based on parasite-targeted chemotherapy.