Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Labelled Comp Radiopharm ; 67(4): 120-130, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332677

RESUMEN

Kainate receptors play a crucial role in mediating synaptic transmission within the central nervous system. However, the lack of selective pharmacological tool compounds for the GluK3 subunit represents a significant challenge in studying these receptors. Recently presented compound 1 stands out as a potent antagonist of GluK3 receptors, exhibiting nanomolar affinity at GluK3 receptors and strongly inhibiting glutamate-induced currents at homomeric GluK1 and GluK3 receptors in HEK293 cells with Kb values of 65 and 39 nM, respectively. This study presents the synthesis of two potent GluK3-preferring iodine derivatives of compound 1, serving as precursors for radiolabelling. Furthermore, we demonstrate the optimisation of dehalogenation conditions using hydrogen and deuterium, resulting in [2H]-1, and demonstrate the efficient synthesis of the radioligand [3H]-1 with a specific activity of 1.48 TBq/mmol (40.1 Ci/mmol). Radioligand binding studies conducted with [3H]-1 as a radiotracer at GluK1, GluK2, and GluK3 receptors expressed in Sf9 and rat P2 membranes demonstrated its potential applicability for selectively studying native GluK3 receptors in the presence of GluK1 and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-blocking ligands.


Asunto(s)
Ácido Glutámico , Receptores de Ácido Kaínico , Ratas , Animales , Humanos , Tritio , Deuterio , Células HEK293 , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Receptores AMPA/química , Receptores AMPA/metabolismo
2.
FEBS Lett ; 598(7): 743-757, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369668

RESUMEN

Kainate receptors belong to the family of ionotropic glutamate receptors and contribute to the majority of fast excitatory neurotransmission. Consequently, they also play a role in brain diseases. Therefore, understanding how these receptors can be modulated is of importance. Our study provides a crystal structure of the dimeric ligand-binding domain of the kainate receptor GluK2 in complex with L-glutamate and the small-molecule positive allosteric modulator, BPAM344, in an active-like conformation. The role of Thr535 and Gln786 in modulating GluK2 by BPAM344 was investigated using a calcium-sensitive fluorescence-based assay on transiently transfected cells expressing GluK2 and mutants hereof. This study may aid in the design of compounds targeting kainate receptors, expanding their potential as targets for the treatment of brain diseases.


Asunto(s)
Encefalopatías , Óxidos S-Cíclicos , Ácido Glutámico , Tiazinas , Humanos , Sitios de Unión , Ligandos , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo
3.
FEBS J ; 291(7): 1506-1529, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38145505

RESUMEN

The kainate receptors GluK1-3 (glutamate receptor ionotropic, kainate receptors 1-3) belong to the family of ionotropic glutamate receptors and are essential for fast excitatory neurotransmission in the brain, and are associated with neurological and psychiatric diseases. How these receptors can be modulated by small-molecule agents is not well understood, especially for GluK3. We show that the positive allosteric modulator BPAM344 can be used to establish robust calcium-sensitive fluorescence-based assays to test agonists, antagonists, and positive allosteric modulators of GluK1-3. The half-maximal effective concentration (EC50) of BPAM344 for potentiating the response of 100 µm kainate was determined to be 26.3 µm for GluK1, 75.4 µm for GluK2, and 639 µm for GluK3. Domoate was found to be a potent agonist for GluK1 and GluK2, with an EC50 of 0.77 and 1.33 µm, respectively, upon co-application of 150 µm BPAM344. At GluK3, domoate acts as a very weak agonist or antagonist with a half-maximal inhibitory concentration (IC50) of 14.5 µm, in presence of 500 µm BPAM344 and 100 µm kainate for competition binding. Using H523A-mutated GluK3, we determined the first dimeric structure of the ligand-binding domain by X-ray crystallography, allowing location of BPAM344, as well as zinc-, sodium-, and chloride-ion binding sites at the dimer interface. Molecular dynamics simulations support the stability of the ion sites as well as the involvement of Asp761, Asp790, and Glu797 in the binding of zinc ions. Using electron microscopy, we show that, in presence of glutamate and BPAM344, full-length GluK3 adopts a dimer-of-dimers arrangement.


Asunto(s)
Ácido Kaínico , Receptores de Ácido Kaínico , Tiazinas , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/agonistas , Ácido Kaínico/farmacología , Óxidos S-Cíclicos , Zinc/metabolismo
4.
Eur J Med Chem ; 264: 116036, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38101041

RESUMEN

The synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 µM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators.


Asunto(s)
Receptores AMPA , Tiadiazinas , Ratones , Animales , Receptores AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Receptores de Ácido Kaínico/metabolismo , Relación Estructura-Actividad , Tiadiazinas/química , Regulación Alostérica
5.
ChemMedChem ; 18(18): e202300278, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37387321

RESUMEN

Kainate receptors are a class of ionotropic glutamate receptors that respond to the excitatory neurotransmitter glutamate in the central nervous system and play an important role in the development of neurodegenerative disorders and the regulation of synaptic function. In the current study, we investigated the structure- activity relationship of the series of quinoxaline-2,3-diones substituted at N1, 6, and 7 positions, as ligands of kainate homomeric receptors GluK1-3 and GluK5. Pharmacological characterization showed that all derivatives obtained exhibited micromolar affinity at GluK3 receptors with Ki values in the range 0.1-4.4 µM range. The antagonistic properties of the selected analogues: N-(7-fluoro-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide, N-(7-(1H-imidazol-1-yl)-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide and N-(7-(1H-imidazol-1-yl)-2,3-dioxo-6-(phenylethynyl)-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide at GluK3 receptors, were confirmed by an intracellular calcium imaging assay. To correlate in vitro affinity data with structural features of the synthesized compounds and to understand the impact of the substituent in N1 position on ability to form additional protein-ligand interactions, molecular modeling and docking studies were carried out. Experimental solubility studies using UV spectroscopy detection have shown that 7-imidazolyl-6-iodo analogues with a sulfamoylbenzamide moiety at the N1 position are the best soluble compounds in the series, with molar solubility in TRISS buffer at pH 9 more than 3-fold higher compared to NBQX, a known AMPA/kainate antagonist.


Asunto(s)
Ácido Kaínico , Receptores de Ácido Kaínico , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Quinoxalinas/farmacología , Solubilidad , Relación Estructura-Actividad
6.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955932

RESUMEN

Kainate receptors belong to the family of glutamate receptors ion channels, which are responsible for the majority of rapid excitatory synaptic transmission in the central nervous system. The therapeutic potential of kainate receptors is still poorly understood, which is also due to the lack of potent and subunit-selective pharmacological tools. In search of selective ligands for the GluK3 kainate receptor subtype, a series of quinoxaline-2,3-dione analogues was synthesized and pharmacologically characterized at selected recombinant ionotropic glutamate receptors. Among them, compound 28 was found to be a competitive GluK3 antagonist with submicromolar affinity and unprecedented high binding selectivity, showing a 400-fold preference for GluK3 over other homomeric receptors GluK1, GluK2, GluK5 and GluA2. Furthermore, in functional assays performed for selected metabotropic glutamate receptor subtypes, 28 did not show agonist or antagonist activity. The molecular determinants underlying the observed affinity profile of 28 were analyzed using molecular docking and molecular dynamics simulations performed for individual GluK1 and GluK3 ligand-binding domains.


Asunto(s)
Receptores de Ácido Kaínico , Ligandos , Simulación del Acoplamiento Molecular , Dominios Proteicos , Receptores de Ácido Kaínico/metabolismo , Receptor Kainato GluK3
7.
ACS Chem Neurosci ; 13(10): 1580-1587, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35475632

RESUMEN

The development of tool compounds for the ionotropic glutamate receptors (iGluRs) remains an important research objective, as these are essential for the study and understanding of the roles of these receptors in health and disease. Herein, we report on the pharmacological characterization of (S)-2-hydroxyhistidine (2a) and (S)-2-mercaptohistidine (2b) as mediators of glutamatergic neurotransmission. While 2a displayed negligible binding affinity or activity at all glutamate receptors and transporters investigated, 2b displayed selectivity for homomeric GluK3 with binding affinities in the low micromolar range (Ki = 6.42 ± 0.74 µM). The iGluR subtype selectivity ratio for 2b was calculated at ∼30-fold for GluK1/GluK3, GluA3/GluK3, and GluA4/GluK3 and >100-fold for GluK2/GluK3, GluA1/GluK3, and GluA2/GluK3. Unexpectedly, functional characterization of 2b revealed that the compound is an antagonist (Kb = 7.6 µM) at homomeric GluK3 receptors while exhibiting only weak agonist activity at GluA2 (EC50 = 3.25 ± 0.55 mM). The functional properties of 2b were explored further in electrophysiological recordings of mouse hippocampal neurons.


Asunto(s)
Receptores de Ácido Kaínico , Transmisión Sináptica , Animales , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo , Receptores de Ácido Kaínico/metabolismo
8.
J Physiol ; 600(2): 181-200, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33938001

RESUMEN

This paper summarizes the present knowledge on how positive allosteric modulators (PAMs) interact with the ligand-binding domain (LBD) of AMPA and kainate receptors, based on structure determinations. AMPA and kainate receptors belong to the family of ionotropic glutamate receptors that are responsible for mediating the majority of fast excitatory neurotransmission. These receptors have been related to brain disorders, e.g. Alzheimer's disease and attention deficit hyperactivity disorder. PAMs are small molecules that potentiate AMPA and kainate receptor currents by interfering with receptor desensitization. Therefore, PAMs are considered to be of interest for the development of pharmacological tools. Whereas PAMs for AMPA receptors have been known for several years, only recently have PAMs for kainate receptors been reported. Today, >80 structures are available for AMPA receptors with PAMs. These PAMs bind at the interface between two LBD subunits in the vicinity of residue 775, which is important for functional differences between flip and flop isoforms of AMPA receptors. PAMs can be divided into five classes based on their binding mode. The most potent PAM reported to date belongs to class 3, which comprises dimerized PAMs. Three structures of the kainate receptor GluK1 were determined with PAMs belonging to class 2. One PAM enhances kainate receptor currents 5- to 59-fold but shows 100-fold lower potency compared to AMPA receptors. Selective PAMs for kainate receptors will be of great use as pharmacological tools for functional investigations in vivo and might potentially prove useful as drugs in controlling the activity of neuronal networks.


Asunto(s)
Receptores AMPA , Receptores de Ácido Kaínico , Neuronas/metabolismo , Dominios Proteicos , Receptores AMPA/química , Receptores de Ácido Kaínico/química
9.
ACS Chem Neurosci ; 11(12): 1791-1800, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32437601

RESUMEN

(S)-2-Amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)propanoic acid (AMPA) receptors comprise an important class of ionotropic glutamate receptors activated by glutamate in the central nervous system. These receptors have been shown to be involved in brain diseases, for example, Alzheimer's disease and epilepsy. To understand the functional role of AMPA receptors at the molecular level and their potential as targets for drugs, development of tool compounds is essential. We have previously reported the synthesis of six bicyclic pyrimidinedione-based analogues of willardiine with differences limited to the pyrimidinedione-fused five-membered rings. Despite minor molecular differences, we observed >500-fold difference in binding affinity of the compounds at full-length GluA2. Here, we report binding affinities and the binding mode of these compounds at the ligand-binding domain of GluA2 using X-ray crystallography. The structures revealed similar binding modes, with distinct differences in the interaction between GluA2 and the compounds. The methylene (2) and sulfur (3) containing compounds showed the greatest binding affinities. Changing the dihydrothiophene (3) into pyrrolidine (4), N-methyl pyrrolidine (5), or dihydrofuran (6) induced flexibility in the position of a binding-site water molecule and changes in the hydrogen-bonding network between compound, water, and GluA2. This might be essential for explaining the reduced binding affinity of these compounds. The weakest binding affinity was observed when the aliphatic oxygen containing dihydrofuran (6) was changed into an aromatic furan system (7). Molecular docking studies revealed two possible orientations of 7, whereas only one binding mode was observed for the other analogues. This could likely contribute to the weakest binding affinity of 7 at GluA2.


Asunto(s)
Receptores AMPA , Receptores Ionotrópicos de Glutamato , Cristalografía por Rayos X , Modelos Moleculares , Simulación del Acoplamiento Molecular
10.
ACS Chem Neurosci ; 11(5): 674-701, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32065744

RESUMEN

Competitive antagonists for ionotropic glutamate receptors (iGluRs) are highly valuable tool compounds for studying health and disease states in the central nervous system. However, only few subtype selective tool compounds are available and the discovery of antagonists with novel iGluR subtype selectivity profiles remains a profound challenge. In this paper, we report an elaborate structure-activity relationship (SAR) study of the parental scaffold 2,3-trans-3-carboxy-3-phenyl-proline by the synthesis of 40 new analogues. Three synthetic strategies were employed with two new strategies of which one being a highly efficient and fully enantioselective strategy based on C(sp3)-H activation methodology. The SAR study led to the conclusion that selectivity for the NMDA receptors was a general trend when adding substituents in the 5'-position. Selective NMDA receptor antagonists were obtained with high potency (IC50 values as low as 200 nM) and 3-34-fold preference for GluN1/GluN2A over GluN1/GluN2B-D NMDA receptors.


Asunto(s)
Ácidos Carboxílicos , Receptores Ionotrópicos de Glutamato , Prolina , Pirrolidinas/farmacología , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Relación Estructura-Actividad
11.
ACS Chem Neurosci ; 11(5): 702-714, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32069018

RESUMEN

Discovery of chemical tools for the ionotropic glutamate receptors continues to be a challenging task. Herein we report a diversity-oriented approach to new 2,3-trans-l-proline analogs whereby we study how the spatial orientation of the distal carboxylate group influences the binding affinity and receptor class and subtype selectivity. In total, 10 new analogs were synthesized and 14 stereoisomers characterized in binding assays at native rat ionotropic glutamate receptors, and at cloned human homomeric kainic acid (KA) receptor subtypes GluK1-3. The study identified isoxazole analogs 3d,e, which displayed selectivity in binding at native N-methyl-d-aspartate (NMDA) receptors over native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and KA receptors, in the high nanomolar to low micromolar range. Furthermore, analogs 3i-A/B showed a preference in binding affinity for GluK3 over GluK1,2. Finally, analog 3j displayed high nanomolar affinity for native NMDA receptors as well as for homomeric GluK3 receptors.


Asunto(s)
Prolina , Receptores Ionotrópicos de Glutamato , Animales , Ligandos , Orientación Espacial , Ratas , Receptores de Ácido Kaínico , Receptores de N-Metil-D-Aspartato , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
12.
ACS Chem Neurosci ; 10(11): 4685-4695, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31622082

RESUMEN

Selective pharmacological tool compounds are invaluable for understanding the functions of the various ionotropic glutamate receptor subtypes. For the kainate receptors, these compounds are few. Here we have synthesized nine novel quinoxaline-2,3-diones with substitutions in the 7-position to investigate the structure-activity relationship at kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Compound 11 exhibited the highest binding affinity across GluK1-3 while having selectivity toward kainate vs AMPA receptors. Compound 11 potently inhibited glutamate evoked currents at homomeric GluK1 and GluK3 receptors in HEK293 cells with Kb values of 65 and 39 nM, respectively. The binding mode of 11 in the ligand binding domain of GluK1 was investigated by X-ray crystallography, revealing that 11 stabilizes the receptor in an open conformation, consistent with its demonstrated antagonism. Furthermore, 11 was tested for analgesic effects in the mouse tail flick test where it significantly increased tail flick latency at doses where 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]-quinoxaline-7-sulfonamide (NBQX) was ineffective.


Asunto(s)
Analgésicos/metabolismo , Cristalografía por Rayos X/métodos , Antagonistas de Aminoácidos Excitadores/metabolismo , Quinoxalinas/metabolismo , Receptores de Ácido Kaínico/antagonistas & inhibidores , Receptores de Ácido Kaínico/metabolismo , Analgésicos/química , Analgésicos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/química , Antagonistas de Aminoácidos Excitadores/farmacología , Células HEK293 , Humanos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Quinoxalinas/química , Quinoxalinas/farmacología , Ratas , Receptores de Ácido Kaínico/química , Relación Estructura-Actividad
13.
Pharmacology ; 104(5-6): 332-341, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31484177

RESUMEN

AIM: The aim of present study is to investigate the binding characteristics of non-peptide calcitonin gene-related peptide (CGRP) receptor antagonists (i.e., gepants) in the brain membranes of rat, pig and human. METHODS: The interaction of available gepants with the CGRP receptor was studied in the brain membranes of 3 different species using a radioligand competitive binding assay. In addition, the distribution of CGRP and its receptor component receptor activity modifying protein 1 (RAMP1) in rat cerebellum and cortex was explored using immunohistochemistry. RESULTS: All gepants, except SB268262, displaced 100% of the radioligand specific binding in the brain tissue of all 3 species and showed highest affinity for CGRP receptors in human brain as compared to rat and pig brain membranes. Furthermore, radioligand binding studies revealed the presence of higher CGRP receptor density in human cerebellum compared to human cortex. The morphology, size and density of CGRP immunoreactive cells suggest that all cerebral cortical neurons were positive for CGRP. Slender receptor immunoreactive fibres were found spanning through the entire cortex. CGRP immunoreactivity was displayed in the cell soma of cerebellar Purkinje cells and in large neurons in the medial cerebellar nucleus. RAMP1 was found on the surface of the Purkinje cells and in parallel fibres, indicating presence in the granule cell axons. CONCLUSION: Cerebellum and cerebral cortex are rich in CGRP and CGRP receptors, which can be antagonized by gepants. However, all gepants display higher affinity for human CGRP receptors as compared to rat and pig CGRP receptors. Furthermore, human cerebellum seems to express higher density of CGRP receptors.


Asunto(s)
Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Unión Competitiva , Femenino , Humanos , Masculino , Ensayo de Unión Radioligante , Ratas Wistar , Especificidad de la Especie , Porcinos
14.
ACS Chem Neurosci ; 10(6): 2989-3007, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31124660

RESUMEN

Development of pharmacological tools for the ionotropic glutamate receptors (iGluRs) is imperative for the study and understanding of the role and function of these receptors in the central nervous system. We report the synthesis of 18 analogues of (2 S,3 R)-2-carboxy-3-pyrrolidine acetic acid (3a), which explores the effect of introducing a substituent on the ε-carbon (3c-q). A new synthetic method was developed for the efficient synthesis of racemic 3a and applied to give expedited access to 13 racemic analogues of 3a. Pharmacological characterization was carried out at native iGluRs, cloned homomeric kainate receptors (GluK1-3), NMDA receptors (GluN1/GluN2A-D), and excitatory amino acid transporters (EAAT1-3). From the structure-activity relationship studies, several new ligands emerged, exemplified by triazole 3p-d1, GluK3-preferring (GluK1/GluK3 Ki ratio of 15), and the structurally closely related tetrazole 3q-s3-4 that displayed 4.4-100-fold preference as an antagonist for the GluN1/GluN2A receptor ( Ki = 0.61 µM) over GluN1/GluN2B-D ( Ki = 2.7-62 µM).


Asunto(s)
Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Prolina/análogos & derivados , Prolina/farmacología , Receptores Ionotrópicos de Glutamato/metabolismo , Animales , Diseño de Fármacos , Humanos , Ligandos , Modelos Moleculares , Prolina/síntesis química , Ratas , Relación Estructura-Actividad
15.
J Med Chem ; 62(9): 4467-4482, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30943028

RESUMEN

We report a series of glutamate and aspartate analogues designed using the hydroxy-1,2,3-triazole moiety as a bioisostere for the distal carboxylic acid. Compound 6b showed unprecedented selectivity among ( S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtypes, confirmed also by an unusual binding mode observed for the crystal structures in complex with the AMPA receptor GluA2 agonist-binding domain. Here, a methionine (Met729) was highly disordered compared to previous agonist-bound structures. This observation provides a possible explanation for the pharmacological profile. In the structure with 7a, an unusual organization of water molecules around the bioisostere arises compared to previous structures of ligands with other bioisosteres. Aspartate analogue 8 with the hydroxy-1,2,3-triazole moiety directly attached to glycine was unexpectedly able to activate both the glutamate and glycine agonist-binding sites of the N-methyl-d-aspartic acid receptor. These observations demonstrate novel features that arise when employing a hydroxytriazole moiety as a bioisostere for the distal carboxylic acid in glutamate receptor agonists.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Receptores AMPA/metabolismo , Triazoles/farmacología , Animales , Sitios de Unión , Cristalografía por Rayos X , Agonistas de Aminoácidos Excitadores/síntesis química , Agonistas de Aminoácidos Excitadores/metabolismo , Células HEK293 , Humanos , Ligandos , Ratas , Receptores AMPA/química , Sinaptosomas/efectos de los fármacos , Triazoles/síntesis química , Triazoles/metabolismo
16.
ACS Chem Neurosci ; 10(3): 1841-1853, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30620174

RESUMEN

Among the ionotropic glutamate receptors, the physiological role of kainate receptors is less well understood. Although ligands with selectivity toward the kainate receptor subtype GluK1 are available, tool compounds with selectivity at the remaining kainate receptor subtypes are sparse. Here, we have synthesized a series of quinoxaline-2,3-diones with substitutions in the N1-, 6-, and 7-position to investigate the structure-activity relationship (SAR) at GluK1-3 and GluK5. Pharmacological characterization at native and recombinant kainate and AMPA receptors revealed that compound 37 had a GluK3-binding affinity ( Ki) of 0.142 µM and 8-fold preference for GluK3 over GluK1. Despite lower binding affinity of 22 at GluK3 ( Ki = 2.91 µM), its preference for GluK3 over GluK1 and GluK2 was >30-fold. Compound 37 was crystallized with the GluK1 ligand-binding domain to understand the SAR. The X-ray structure showed that 37 stabilized the protein in an open conformation, consistent with an antagonist binding mode.


Asunto(s)
Quinoxalinas/farmacología , Receptores AMPA/metabolismo , Receptores de Ácido Kaínico/metabolismo , Relación Estructura-Actividad , Animales , Modelos Moleculares , Dominios Proteicos/fisiología , Receptores de Ácido Kaínico/antagonistas & inhibidores
17.
J Med Chem ; 61(5): 2124-2130, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29451794

RESUMEN

Starting from 1-4 and 7 structural templates, analogues based on bioisosteric replacements (5a-c vs 1, 2 and 6 vs 7) were synthesized for completing the SAR analysis. Interesting binding properties at GluA2, GluK1, and GluK3 receptors were discovered. The requirements for GluK3 interaction were elucidated by determining the X-ray structures of the GluK3-LBD with 2 and 5c and by computational studies. Antinociceptive potential was demonstrated for GluK1 partial agonist 3 and antagonist 7 (2 mg/kg ip).


Asunto(s)
Receptores de Ácido Kaínico/química , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/análogos & derivados , Analgésicos/química , Animales , Cristalografía por Rayos X , Ligandos , Unión Proteica , Receptores AMPA , Receptores de Ácido Kaínico/agonistas , Receptores de Ácido Kaínico/antagonistas & inhibidores , Receptores de Ácido Kaínico/metabolismo , Relación Estructura-Actividad , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/química , Receptor Kainato GluK3
18.
J Med Chem ; 60(23): 9885-9904, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29205034

RESUMEN

The most common solid tumors show intrinsic multidrug resistance (MDR) or inevitably acquire such when treated with anticancer drugs. In this work, we describe the discovery of a peripherally restricted, potent, competitive NMDA receptor antagonist 1l by a structure-activity study of the broad-acting ionotropic glutamate receptor antagonist 1a. Subsequently, we demonstrate that 1l augments the cytotoxic action of sorafenib in murine hepatocellular carcinoma cells. The underlying biological mechanism was shown to be interference with the lipid signaling pathway, leading to reduced expression of MDR transporters and thereby an increased accumulation of sorafenib in the cancer cells. Interference with lipid signaling pathways by NMDA receptor inhibition is a novel and promising strategy for reversing transporter-mediated chemoresistance in cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Antineoplásicos/farmacocinética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Descubrimiento de Drogas , Resistencia a Múltiples Medicamentos , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , Niacinamida/farmacocinética , Niacinamida/farmacología , Compuestos de Fenilurea/farmacocinética , Receptores de N-Metil-D-Aspartato/metabolismo , Sorafenib
19.
ACS Chem Neurosci ; 8(11): 2477-2495, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28872835

RESUMEN

More than two decades ago, the quinoxalinedione scaffold was shown to act as an α-amino acid bioisoster. Following extensive structure-activity relationship (SAR) studies, the antagonists DNQX, CNQX, and NBQX in the ionotropic glutamate receptor field were identified. In this work, we revisit the quinoxalinedione scaffold and explore the incorporation of an acid functionality in the 6-position. The SAR studies disclose that by this strategy it was possible to tune in iGluR selectivity among the AMPA, NMDA, and KA receptors, and to some extent also obtain full receptor subtype selectivity. Highlights of the study of 44 new analogues are compound 2m being a high affinity ligand for native AMPA receptors (IC50= 0.48 µM), analogues 2e,f,h,k,v all displayed selectivity for native NMDA receptors, and compounds 2s,t,u are selective ligand for the GluK1 receptor. Most interestingly, compound 2w was shown to be a GluK3-preferring ligand with full selectivity over native AMPA, KA and NMDA receptors.


Asunto(s)
Quinoxalinas/química , Receptores Ionotrópicos de Glutamato/metabolismo , Aminoácidos/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Ensayo de Unión Radioligante , Ratas , Receptores Ionotrópicos de Glutamato/efectos de los fármacos , Relación Estructura-Actividad , Especificidad por Sustrato , Sinaptosomas/metabolismo
20.
Pharmacol Biochem Behav ; 161: 62-67, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28943199

RESUMEN

Pharmacological inhibition of PSD-95 is a promising therapeutic strategy in the treatment of stroke, and positive effects of monomeric and dimeric PSD-95 inhibitors have been reported in numerous studies. However, whether therapeutic effects will generalize to other types of acute brain injury such as traumatic brain injury (TBI), which has pathophysiological mechanisms in common with stroke, is currently uncertain. We have previously found a lack of neuroprotective effects of dimeric PSD-95 inhibitors in the controlled cortical impact model of TBI in rats. However, as no single animal model is currently able to mimic the complex and heterogeneous pathophysiology of TBI, it is necessary to assess treatment effects across a range of models. In this preliminary study we investigated the neuroprotective abilities of the dimeric PSD-95 inhibitor UCCB01-144 after fimbria-fornix (FF) transection in rats. UCCB01-144 or saline was injected into the lateral tail vein of rats immediately after sham surgery or FF-transection, and effects on spatial delayed alternation in a T-maze were assessed over a 28-day period. Task acquisition was significantly impaired in FF-transected animals, but there were no significant effects of UCCB01-144 on spatial delayed alternation after FF-transection or sham surgery, although decelerated learning curves were seen after treatment with UCCB01-144 in FF-transected animals. The results of the present study are consistent with previous research showing a lack of neuroprotective effects of PSD-95 inhibition in experimental models of TBI.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Homólogo 4 de la Proteína Discs Large/antagonistas & inhibidores , Fórnix/efectos de los fármacos , Oligopéptidos/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Animales , Lesiones Encefálicas/patología , Fórnix/patología , Fórnix/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oligopéptidos/farmacología , Ratas , Ratas Wistar , Recuperación de la Función/fisiología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...