Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
J Neurosci ; 44(12)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38360749

While originally identified as an antiviral pathway, recent work has implicated that cyclic GMP-AMP-synthase-Stimulator of Interferon Genes (cGAS-STING) signaling is playing a critical role in the neuroinflammatory response to traumatic brain injury (TBI). STING activation results in a robust inflammatory response characterized by the production of inflammatory cytokines called interferons, as well as hundreds of interferon stimulated genes (ISGs). Global knock-out (KO) mice inhibiting this pathway display neuroprotection with evidence that this pathway is active days after injury; yet, the early neuroinflammatory events stimulated by STING signaling remain understudied. Furthermore, the source of STING signaling during brain injury is unknown. Using a murine controlled cortical impact (CCI) model of TBI, we investigated the peripheral immune and microglial response to injury utilizing male chimeric and conditional STING KO animals, respectively. We demonstrate that peripheral and microglial STING signaling contribute to negative outcomes in cortical lesion volume, cell death, and functional outcomes postinjury. A reduction in overall peripheral immune cell and neutrophil infiltration at the injury site is STING dependent in these models at 24 h. Transcriptomic analysis at 2 h, when STING is active, reveals that microglia drive an early, distinct transcriptional program to elicit proinflammatory genes including interleukin 1-ß (IL-1ß), which is lost in conditional knock-out mice. The upregulation of alternative innate immune pathways also occurs after injury in these animals, which supports a complex relationship between brain-resident and peripheral immune cells to coordinate the proinflammatory response and immune cell influx to damaged tissue after injury.


Brain Injuries, Traumatic , Microglia , Animals , Male , Mice , Brain Injuries, Traumatic/pathology , Cytokines/metabolism , Interferons/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Signal Transduction
2.
J Cell Biol ; 223(2)2024 02 05.
Article En | MEDLINE | ID: mdl-38059900

Subcellular location and activation of Tank Binding Kinase 1 (TBK1) govern precise progression through mitosis. Either loss of activated TBK1 or its sequestration from the centrosomes causes errors in mitosis and growth defects. Yet, what regulates its recruitment and activation on the centrosomes is unknown. We identified that NAK-associated protein 1 (NAP1) is essential for mitosis, binding to and activating TBK1, which both localize to centrosomes. Loss of NAP1 causes several mitotic and cytokinetic defects due to inactivation of TBK1. Our quantitative phosphoproteomics identified numerous TBK1 substrates that are not only confined to the centrosomes but are also associated with microtubules. Substrate motifs analysis indicates that TBK1 acts upstream of other essential cell cycle kinases like Aurora and PAK kinases. We also identified NAP1 as a TBK1 substrate phosphorylating NAP1 at S318 to promote its degradation by the ubiquitin proteasomal system. These data uncover an important distinct function for the NAP1-TBK1 complex during cell division.


Adaptor Proteins, Signal Transducing , Cytokinesis , Mitosis , Protein Serine-Threonine Kinases , Humans , Cell Cycle , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
3.
Sci Rep ; 13(1): 15339, 2023 09 15.
Article En | MEDLINE | ID: mdl-37714940

SARS-CoV-2 causes the severe respiratory disease COVID-19. Remdesivir (RDV) was the first fast-tracked FDA approved treatment drug for COVID-19. RDV acts as an antiviral ribonucleoside (adenosine) analogue that becomes active once it accumulates intracellularly. It then diffuses into the host cell and terminates viral RNA transcription. Previous studies have shown that certain nucleoside analogues unintentionally inhibit mitochondrial RNA or DNA polymerases or cause mutational changes to mitochondrial DNA (mtDNA). These past findings on the mitochondrial toxicity of ribonucleoside analogues motivated us to investigate what effects RDV may have on mitochondrial function. Using in vitro and in vivo rodent models treated with RDV, we observed increases in mtDNA copy number in Mv1Lu cells (35.26% increase ± 11.33%) and liver (100.27% increase ± 32.73%) upon treatment. However, these increases only resulted in mild changes to mitochondrial function. Surprisingly, skeletal muscle and heart were extremely resistant to RDV treatment, tissues that have preferentially been affected by other nucleoside analogues. Although our data suggest that RDV does not greatly impact mitochondrial function, these data are insightful for the treatment of RDV for individuals with mitochondrial disease.


COVID-19 , DNA, Mitochondrial , Humans , DNA, Mitochondrial/genetics , Oxidative Phosphorylation , DNA Copy Number Variations , Nucleosides , COVID-19 Drug Treatment , SARS-CoV-2 , Mitochondria/genetics
4.
Biomedicines ; 11(2)2023 Jan 24.
Article En | MEDLINE | ID: mdl-36830865

Mild blast-induced traumatic brain injury (bTBI) is a modality of injury that has been of major concern considering a large number of military personnel exposed to explosive blast waves. bTBI results from the propagation of high-pressure static blast forces and their subsequent energy transmission within brain tissue. Exposure to this overpressure energy causes a diffuse injury that leads to acute cell damage and, if chronic, leads to detrimental long-term cognitive deficits. The literature presents a neuro-centric approach to the role of mitochondria dynamics dysfunction in bTBI, and changes in astrocyte-specific mitochondrial dynamics have not been characterized. The balance between fission and fusion events is known as mitochondrial dynamics. As a result of fission and fusion, the mitochondrial structure is constantly altering its shape to respond to physiological stimuli or stress, which in turn affects mitochondrial function. Astrocytic mitochondria are recognized to play an essential role in overall brain metabolism, synaptic transmission, and neuron protection. Mitochondria are vulnerable to injury insults, leading to the increase in mitochondrial fission, a mechanism controlled by the GTPase dynamin-related protein (Drp1) and the phosphorylation of Drp1 at serine 616 (p-Drp1s616). This site is critical to mediate the Drp1 translocation to mitochondria to promote fission events and consequently leads to fragmentation. An increase in mitochondrial fragmentation could have negative consequences, such as promoting an excessive generation of reactive oxygen species or triggering cytochrome c release. The aim of the present study was to characterize the unique pattern of astrocytic mitochondrial dynamics by exploring the role of DRP1 with a combination of in vitro and in vivo bTBI models. Differential remodeling of the astrocytic mitochondrial network was observed, corresponding with increases in p-Drp1S616 four hours and seven days post-injury. Further, results showed a time-dependent reactive astrocyte phenotype transition in the rat hippocampus. This discovery can lead to innovative therapeutics targets to help prevent the secondary injury cascade after blast injury that involves mitochondria dysfunction.

5.
WIREs Mech Dis ; 15(3): e1597, 2023.
Article En | MEDLINE | ID: mdl-36632700

The cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase-Stimulator of Interferon Genes (cGAS-STING) pathway is a critical innate immune mechanism for detecting the presence of double-stranded DNA (dsDNA) and prompting a robust immune response. Canonical cGAS-STING activation occurs when cGAS, a predominantly cytosolic pattern recognition receptor, binds microbial DNA to promote STING activation. Upon STING activation, transcription factors enter the nucleus to cause the production of Type I interferons, inflammatory cytokines whose primary function is to prime the host for viral infection by producing a number of antiviral interferon-stimulated genes. While the pathway was originally described in viral infection, more recent studies have implicated cGAS-STING signaling in a number of different contexts, including autoimmune disease, cancer, injury, and neuroinflammatory disease. This review focuses on how our understanding of the cGAS-STING pathway has evolved over time with an emphasis on the role of STING-mediated neuroinflammation and infection in the nervous system. We discuss recent findings on how STING signaling contributes to the pathology of pain, traumatic brain injury, and stroke, as well as how mitochondrial DNA may promote STING activation in common neurodegenerative diseases. We conclude by commenting on the current knowledge gaps that should be filled before STING can be an effective therapeutic target in neuroinflammatory disease. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.


Central Nervous System Infections , Interferon Type I , Humans , DNA/metabolism , Neuroinflammatory Diseases , Nucleotidyltransferases/genetics , Signal Transduction/genetics
7.
JCI Insight ; 7(15)2022 08 08.
Article En | MEDLINE | ID: mdl-35737458

Circulating monocytes have emerged as key regulators of the neuroinflammatory milieu in a number of neuropathological disorders. Ephrin type A receptor 4 (Epha4) receptor tyrosine kinase, a prominent axon guidance molecule, has recently been implicated in the regulation of neuroinflammation. Using a mouse model of brain injury and a GFP BM chimeric approach, we found neuroprotection and a lack of significant motor deficits marked by reduced monocyte/macrophage cortical infiltration and an increased number of arginase-1+ cells in the absence of BM-derived Epha4. This was accompanied by a shift in monocyte gene profile from pro- to antiinflammatory that included increased Tek (Tie2 receptor) expression. Inhibition of Tie2 attenuated enhanced expression of M2-like genes in cultured Epha4-null monocytes/macrophages. In Epha4-BM-deficient mice, cortical-isolated GFP+ monocytes/macrophages displayed a phenotypic shift from a classical to an intermediate subtype, which displayed reduced Ly6chi concomitant with increased Ly6clo- and Tie2-expressing populations. Furthermore, clodronate liposome-mediated monocyte depletion mimicked these effects in WT mice but resulted in attenuation of phenotype in Epha4-BM-deficient mice. This demonstrates that monocyte polarization not overall recruitment dictates neural tissue damage. Thus, coordination of monocyte proinflammatory phenotypic state by Epha4 is a key regulatory step mediating brain injury.


Brain Injuries , Monocytes , Humans , Brain Injuries/metabolism , Ephrins/metabolism , Monocytes/metabolism , Phenotype , Receptor, EphB2/metabolism , Animals , Mice
9.
Front Mol Neurosci ; 15: 852243, 2022.
Article En | MEDLINE | ID: mdl-35283725

Background: Inflammation is a significant contributor to neuronal death and dysfunction following traumatic brain injury (TBI). Recent evidence suggests that interferons may be a key regulator of this response. Our studies evaluated the role of the Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) signaling pathway in a murine model of TBI. Methods: Male, 8-week old wildtype, STING knockout (-/-), cGAS -/-, and NLRX1 -/- mice were subjected to controlled cortical impact (CCI) or sham injury. Histopathological evaluation of tissue damage was assessed using non-biased stereology, which was complemented by analysis at the mRNA and protein level using qPCR and western blot analysis, respectively. Results: We found that STING and Type I interferon-stimulated genes were upregulated after CCI injury in a bi-phasic manner and that loss of cGAS or STING conferred neuroprotection concomitant with a blunted inflammatory response at 24 h post-injury. cGAS -/- animals showed reduced motor deficits 4 days after injury (dpi), and amelioration of tissue damage was seen in both groups of mice up to 14 dpi. Given that cGAS requires a cytosolic damage- or pathogen-associated molecular pattern (DAMP/PAMP) to prompt downstream STING signaling, we further demonstrate that mitochondrial DNA is present in the cytosol after TBI as one possible trigger for this pathway. Recent reports suggest that the immune modulator NLR containing X1 (NLRX1) may sequester STING during viral infection. Our findings show that NLRX1 may be an additional regulator that functions upstream to regulate the cGAS-STING pathway in the brain. Conclusions: These findings suggest that the canonical cGAS-STING-mediated Type I interferon signaling axis is a critical component of neural tissue damage following TBI and that mtDNA may be a possible trigger in this response.

10.
Biochim Biophys Acta Gen Subj ; 1865(6): 129871, 2021 06.
Article En | MEDLINE | ID: mdl-33571581

PINK1, a serine/threonine ubiquitin kinase, and Parkin, an E3 ubiquitin ligase, work in coordination to target damaged mitochondria to the lysosome in a process called mitophagy. This review will cover what we have learned from PINK1 and Parkin knockout (KO) mice. Systemic PINK1 and Parkin KO mouse models haven't faithfully recapitulated early onset forms of Parkinson's disease found in humans with recessive mutations in these genes. However, the utilization of these mouse models has given us insight into how PINK1 and Parkin contribute to mitochondrial quality control and function in different tissues beyond the brain such as in heart and adipose tissue. Although PINK1 and Parkin KO mice have been generated over a decade ago, these models are still being used today to creatively elucidate cell-type specific functions. Recently, these mouse models have uncovered that these proteins contribute to innate immunity and cancer phenotypes.


Disease Models, Animal , Parkinson Disease/pathology , Phenotype , Protein Kinases/physiology , Ubiquitin-Protein Ligases/physiology , Animals , Humans , Mice , Mice, Knockout , Parkinson Disease/etiology
11.
Front Cell Neurosci ; 15: 807170, 2021.
Article En | MEDLINE | ID: mdl-35027884

Abnormalities in the prefrontal cortex (PFC), as well as the underlying white matter (WM) tracts, lie at the intersection of many neurodevelopmental disorders. The influence of microorganisms on brain development has recently been brought into the clinical and research spotlight as alterations in commensal microbiota are implicated in such disorders, including autism spectrum disorders, schizophrenia, depression, and anxiety via the gut-brain axis. In addition, gut dysbiosis is common in preterm birth patients who often display diffuse WM injury and delayed WM maturation in critical tracts including those within the PFC and corpus callosum. Microbial colonization of the gut aligns with ongoing postnatal processes of oligodendrogenesis and the peak of brain myelination in humans; however, the influence of microbiota on gyral WM development remains elusive. Here, we develop and validate a neonatal germ-free swine model to address these issues, as piglets share key similarities in WM volume, developmental trajectories, and distribution to humans. We find significant region-specific reductions, and sexually dimorphic trends, in WM volume, oligodendrogenesis, and mature oligodendrocyte numbers in germ-free piglets during a key postnatal epoch of myelination. Our findings indicate that microbiota plays a critical role in promoting WM development during early life when the brain is vulnerable to environmental insults that can result in an array of disabilities manifesting later in life.

12.
Mol Cell ; 80(5): 779-795.e10, 2020 12 03.
Article En | MEDLINE | ID: mdl-33207181

Protein aggregates disrupt cellular homeostasis, causing toxicity linked to neurodegeneration. Selective autophagic elimination of aggregates is critical to protein quality control, but how aggregates are selectively targeted for degradation is unclear. We compared the requirements for autophagy receptor proteins: OPTN, NBR1, p62, NDP52, and TAX1BP1 in clearance of proteotoxic aggregates. Endogenous TAX1BP1 is recruited to and required for the clearance of stress-induced aggregates, whereas ectopic expression of TAX1BP1 increases clearance through autophagy, promoting viability of human induced pluripotent stem cell-derived neurons. In contrast, TAX1BP1 depletion sensitizes cells to several forms of aggregate-induced proteotoxicity. Furthermore, TAX1BP1 is more specifically expressed in the brain compared to other autophagy receptor proteins. In vivo, loss of TAX1BP1 results in accumulation of high molecular weight ubiquitin conjugates and premature lipofuscin accumulation in brains of young TAX1BP1 knockout mice. TAX1BP1 mediates clearance of a broad range of cytotoxic proteins indicating therapeutic potential in neurodegenerative diseases.


Apoptosis Regulatory Proteins/deficiency , Autophagy , Brain/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Neoplasm Proteins/deficiency , Neurodegenerative Diseases/metabolism , Protein Aggregation, Pathological/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Brain/pathology , Female , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Lipofuscin/genetics , Lipofuscin/metabolism , Male , Mice , Mice, Knockout , Neoplasm Proteins/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Rats , Rats, Sprague-Dawley , Ubiquitin/genetics , Ubiquitin/metabolism
13.
J Mol Biol ; 432(8): 2510-2524, 2020 04 03.
Article En | MEDLINE | ID: mdl-31689437

Selective autophagy of mitochondria, or mitophagy, refers to the specific removal and degradation of damaged or surplus mitochondria via targeting to the lysosome for destruction. Disruptions in this homeostatic process may contribute to disease. The identification of diverse mitophagic pathways and how selectivity for each of these pathways is conferred is just beginning to be understood. The removal of both damaged and healthy mitochondria under disease and physiological conditions is controlled by either ubiquitin-dependent or receptor-dependent mechanisms. In this review, we will discuss the known types of mitophagy observed in mammals, recent findings related to PINK1/Parkin-mediated mitophagy (which is the most well-studied form of mitophagy), the implications of defective mitophagy to neurodegenerative processes, and unanswered questions inspiring future research that would enhance our understanding of mitochondrial quality control.


Mitochondria/pathology , Mitophagy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Animals , Humans , Mitochondria/metabolism , Signal Transduction , Ubiquitinated Proteins/metabolism , Ubiquitination
14.
J Neuroinflammation ; 16(1): 210, 2019 Nov 11.
Article En | MEDLINE | ID: mdl-31711546

BACKGROUND: The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. METHODS: Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. RESULTS: EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. CONCLUSIONS: Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.


Brain Injuries, Traumatic/metabolism , Cerebral Cortex/metabolism , Encephalitis/metabolism , Receptor, EphA4/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain Injuries, Traumatic/pathology , Cerebral Cortex/pathology , Disease Models, Animal , Encephalitis/pathology , Humans , Male , Mice , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Receptor, EphA4/genetics
15.
Cell Rep ; 29(1): 225-235.e5, 2019 10 01.
Article En | MEDLINE | ID: mdl-31577952

PINK1 and Parkin are established mediators of mitophagy, the selective removal of damaged mitochondria by autophagy. PINK1 and Parkin have been proposed to act as tumor suppressors, as loss-of-function mutations are correlated with enhanced tumorigenesis. However, it is unclear how PINK1 and Parkin act in coordination during mitophagy to influence the cell cycle. Here we show that PINK1 and Parkin genetically interact with proteins involved in cell cycle regulation, and loss of PINK1 and Parkin accelerates cell growth. PINK1- and Parkin-mediated activation of TBK1 at the mitochondria during mitophagy leads to a block in mitosis due to the sequestration of TBK1 from its physiological role at centrosomes during mitosis. Our study supports a diverse role for the far-reaching, regulatory effects of mitochondrial quality control in cellular homeostasis and demonstrates that the PINK1/Parkin pathway genetically interacts with the cell cycle, providing a framework for understanding the molecular basis linking PINK1 and Parkin to mitosis.


Cell Cycle/genetics , Mitochondria/genetics , Mitosis/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Autophagy/genetics , Cell Line, Tumor , Cell Proliferation/genetics , HCT116 Cells , HEK293 Cells , HeLa Cells , Homeostasis/genetics , Humans , Mitophagy/genetics
16.
Nat Commun ; 10(1): 3892, 2019 08 29.
Article En | MEDLINE | ID: mdl-31467272

Life experience can leave lasting marks, such as epigenetic changes, in the brain. How life experience is translated into storable epigenetic information remains largely unknown. With unbiased data-driven approaches, we predicted that Egr1, a transcription factor important for memory formation, plays an essential role in brain epigenetic programming. We performed EGR1 ChIP-seq and validated thousands of EGR1 binding sites with methylation patterns established during postnatal brain development. More specifically, these EGR1 binding sites become hypomethylated in mature neurons but remain heavily methylated in glia. We further demonstrated that EGR1 recruits a DNA demethylase TET1 to remove the methylation marks and activate downstream genes. The frontal cortices from the knockout mice lacking Egr1 or Tet1 share strikingly similar profiles in both gene expression and DNA methylation. In summary, our study reveals EGR1 programs the brain methylome together with TET1 providing new insight into how life experience may shape the brain methylome.


Brain/metabolism , DNA-Binding Proteins/metabolism , Early Growth Response Protein 1/metabolism , Epigenome/physiology , Neurons/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Binding Sites , DNA Methylation , DNA-Binding Proteins/genetics , Early Growth Response Protein 1/genetics , Epigenome/genetics , Epigenomics , Gene Expression Regulation , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Neurogenesis/physiology , Neuronal Plasticity/physiology , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins/genetics , Transcription Factors , Transcriptome
17.
Article En | MEDLINE | ID: mdl-31330216

Mood disorders such as anxiety and depression are heterogeneous disorders with many sufferers unresponsive to current pharmacological treatments. Individual differences in temperament represent one factor that may underlie symptom heterogeneity, so understanding its biological underpinnings can help pave the way to personalized therapies and improved patient outcomes. The present study uses a rodent model of temperamental differences to examine whether individual differences in emotional behavior phenotypes correspond to altered limbic brain cellular metabolism, an indicator of neuronal activity. The model uses two selectively bred rat lines - high novelty responder rats (HRs) that show highly exploratory behavior in a novel environment, active coping style and resilience to chronic mild stress compared to low novelty responder rats (LRs), which are inhibited in novel environments, display passive coping style, and are susceptible to chronic stress. Utilizing transcriptome data from a prior study in adult HR/LR rats, we first show that a preponderance of genes differing in the HR vs. LR hippocampus and amygdala are involved in cellular metabolism. This led us to then ask if oxygen consumption was altered in isolated mitochondria of the hippocampus and amygdala of HR/LR rats; here we found increased oxygen consumption reserve capacity in LR amygdala. Our last experiment examined activity of cytochrome c oxidase (COX), an enzyme responsible for ATP production and correlate of metabolic activity, in several brain regions of HR/LR rats. We found that LRs displayed higher COX activity in the dentate gyrus, prefrontal cortex, and dorsal raphe compared to HRs, with no significant HR/LR difference in nuclei of the amygdala. Correlational analyses of COX activity across brain regions suggested divergent connectivity between the prefrontal cortex, amygdala, hippocampus, and dorsal raphe of HR vs. LR rats. Together these studies point to altered cellular metabolism in the limbic brain of LR/HR animals, which may reflect altered neural circuitry that drives their divergent behavioral profiles.


Amygdala/metabolism , Anxiety/metabolism , Emotions/physiology , Hippocampus/metabolism , Mitochondria/metabolism , Oxygen Consumption/physiology , Animals , Exploratory Behavior/physiology , Male , Motor Activity/physiology , Rats , Stress, Psychological/metabolism , Transcriptome
18.
J Neurosci Methods ; 325: 108351, 2019 09 01.
Article En | MEDLINE | ID: mdl-31299189

Mitophagy is the selective degradation of mitochondria by autophagy. Methods to study mitophagy in neurons is of increasing importance as neurodegenerative diseases such as Parkinson's and Alzheimer's display disrupted mitophagy as part of their pathogenesis. Since the last decade, researchers have determined how selective mitophagy pathways such as PINK1/Parkin and Mul1 function at the cellular level. Thus, advances in techniques to study these pathways specifically in neurons and glia have arisen. This review will introduce mitophagy pathways studied in neurons and evaluate current techniques available to investigate mitophagy.


Mitophagy/physiology , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Neurosciences/methods , Protein Kinases/metabolism , Proteomics/methods , Ubiquitin-Protein Ligases/metabolism , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Neurodegenerative Diseases/diagnosis
19.
Cell Death Differ ; 24(2): 288-299, 2017 02.
Article En | MEDLINE | ID: mdl-27911443

We observed that the transient induction of mtDNA double strand breaks (DSBs) in cultured cells led to activation of cell cycle arrest proteins (p21/p53 pathway) and decreased cell growth, mediated through reactive oxygen species (ROS). To investigate this process in vivo we developed a mouse model where we could transiently induce mtDNA DSBs ubiquitously. This transient mtDNA damage in mice caused an accelerated aging phenotype, preferentially affecting proliferating tissues. One of the earliest phenotypes was accelerated thymus shrinkage by apoptosis and differentiation into adipose tissue, mimicking age-related thymic involution. This phenotype was accompanied by increased ROS and activation of cell cycle arrest proteins. Treatment with antioxidants improved the phenotype but the knocking out of p21 or p53 did not. Our results demonstrate that transient mtDNA DSBs can accelerate aging of certain tissues by increasing ROS. Surprisingly, this mtDNA DSB-associated senescence phenotype does not require p21/p53, even if this pathway is activated in the process.


Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA, Mitochondrial/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylcysteine/pharmacology , Aging , Animals , Apoptosis , Cell Cycle Checkpoints/drug effects , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Breaks, Double-Stranded/drug effects , Deoxyribonucleases, Type II Site-Specific/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mifepristone/toxicity , Phenotype , Reactive Oxygen Species/metabolism , Thymocytes/cytology , Thymocytes/drug effects , Thymocytes/metabolism , Tumor Suppressor Protein p53/genetics
20.
Neuron ; 87(2): 371-81, 2015 Jul 15.
Article En | MEDLINE | ID: mdl-26182419

Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. PARK2 mutations cause early-onset forms of PD. PARK2 encodes an E3 ubiquitin ligase, Parkin, that can selectively translocate to dysfunctional mitochondria to promote their removal by autophagy. However, Parkin knockout (KO) mice do not display signs of neurodegeneration. To assess Parkin function in vivo, we utilized a mouse model that accumulates dysfunctional mitochondria caused by an accelerated generation of mtDNA mutations (Mutator mice). In the absence of Parkin, dopaminergic neurons in Mutator mice degenerated causing an L-DOPA reversible motor deficit. Other neuronal populations were unaffected. Phosphorylated ubiquitin was increased in the brains of Mutator mice, indicating PINK1-Parkin activation. Parkin loss caused mitochondrial dysfunction and affected the pathogenicity but not the levels of mtDNA somatic mutations. A systemic loss of Parkin synergizes with mitochondrial dysfunction causing dopaminergic neuron death modeling PD pathogenic processes.


DNA, Mitochondrial/genetics , Dopaminergic Neurons/pathology , Mitochondrial Diseases/pathology , Mutation/genetics , Substantia Nigra/pathology , Ubiquitin-Protein Ligases/metabolism , Analysis of Variance , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , In Vitro Techniques , Levodopa/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondrial Diseases/genetics , Multienzyme Complexes/metabolism , Proteomics , Substantia Nigra/drug effects , Tyrosine 3-Monooxygenase/metabolism , Ubiquitin , Ubiquitin-Protein Ligases/genetics
...