Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 13: 878280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651975

RESUMEN

Exposure to arsenic in drinking water is a worldwide health problem. This pollutant is associated with increased risk of developing chronic diseases, including metabolic diseases. Metabolic syndrome (MS) is a complex pathology that results from the interaction between environmental and genetic factors. This condition increases the risk of developing type 2 diabetes, cardiovascular diseases, and cancer. The MS includes at least three of the following signs, central obesity, impaired fasting glucose, insulin resistance, dyslipidemias, and hypertension. Here, we summarize the existing evidence of the multiple mechanisms triggered by arsenic to developing the cardinal signs of MS, showing that this pollutant could contribute to the multifactorial origin of this pathology.


Asunto(s)
Arsénico , Diabetes Mellitus Tipo 2 , Contaminantes Ambientales , Síndrome Metabólico , Arsénico/toxicidad , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/complicaciones , Factores de Riesgo
2.
Pharmacol Rep ; 73(6): 1744-1753, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34213738

RESUMEN

BACKGROUND: Ion channels have been proposed as therapeutic targets for different types of malignancies. One of the most studied ion channels in cancer is the voltage-gated potassium channel ether-à-go-go 1 or Kv10.1. Various studies have shown that Kv10.1 expression induces the proliferation of several cancer cell lines and in vivo tumor models, while blocking or silencing inhibits proliferation. Kv10.1 is a promising target for drug discovery modulators that could be used in cancer treatment. This work aimed to screen for new Kv10.1 channel modulators using a thallium influx-based assay. METHODS: Pharmacological effects of small molecules on Kv10.1 channel activity were studied using a thallium-based fluorescent assay and patch-clamp electrophysiological recordings, both performed in HEK293 stably expressing the human Kv10.1 potassium channel. RESULTS: In thallium-sensitive fluorescent assays, we found that the small molecules loperamide and amitriptyline exert a potent inhibition on the activity of the oncogenic potassium channel Kv10.1. These results were confirmed by electrophysiological recordings, which showed that loperamide and amitriptyline decreased the amplitude of Kv10.1 currents in a dose-dependent manner. Both drugs could be promising tools for further studies. CONCLUSIONS: Thallium-sensitive fluorescent assay represents a reliable methodological tool for the primary screening of different molecules with potential activity on Kv10.1 channels or other K+ channels.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Loperamida/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Relación Dosis-Respuesta a Droga , Fluorescencia , Células HEK293 , Humanos , Loperamida/administración & dosificación , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/administración & dosificación , Reproducibilidad de los Resultados , Talio/metabolismo
3.
J Theor Biol ; 508: 110459, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32890554

RESUMEN

As a complement to the experimental work, mathematical models are extensively used to study the functional properties of ionic channels. Even though it is generally assumed that the gating of ionic channels is a Markovian phenomenon, reports based on non-traditional analyses of experimental recordings suggest that non-Markovian processes might be also present. While the stochastic Markov models are by far the most adopted approach for the modeling of ionic channels, a model based on the idea of a deterministic process underlying the gating of ionic channels was proposed by Liebovitch and Toth (Liebovitch, L.S. and Toth, T.I., 1991. Journal of Theoretical Biology, 148(2), pp.243-267.) Here, by using a voltage-dependent K+ channel as a first approximation, we propose a modified version of the deterministic model of Liebovitch and Toth that, in addition to reproducing the single-channel currents simulated by a two-states Markov model, it is capable of reproducing the whole-cell currents produced by a population of K+ channels.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos
4.
Stem Cells Int ; 2019: 7627148, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31065279

RESUMEN

Human mesenchymal stem cells (MSCs) are good candidates for brain cell replacement strategies and have already been used as adjuvant treatments in neurological disorders. MSCs can be obtained from many different sources, and the present study compares the potential of neuronal transdifferentiation in MSCs from adult and neonatal sources (Wharton's jelly (WhJ), dental pulp (DP), periodontal ligament (PDL), gingival tissue (GT), dermis (SK), placenta (PLAC), and umbilical cord blood (UCB)) with a protocol previously tested in bone marrow- (BM-) MSCs consisting of a cocktail of six small molecules: I-BET151, CHIR99021, forskolin, RepSox, Y-27632, and dbcAMP (ICFRYA). Neuronal morphology and the presence of cells positive for neuronal markers (TUJ1 and MAP2) were considered attributes of neuronal induction. The ICFRYA cocktail did not induce neuronal features in WhJ-MSCs, and these features were only partial in the MSCs from dental tissues, SK-MSCs, and PLAC-MSCs. The best response was found in UCB-MSCs, which was comparable to the response of BM-MSCs. The addition of neurotrophic factors to the ICFRYA cocktail significantly increased the number of cells with complex neuron-like morphology and increased the number of cells positive for mature neuronal markers in BM- and UCB-MSCs. The neuronal cells generated from UCB-MSCs and BM-MSCs showed increased reactivity of the neuronal genes TUJ1, MAP2, NF-H, NCAM, ND1, TAU, ENO2, GABA, and NeuN as well as down- and upregulation of MSC and neuronal genes, respectively. The present study showed marked differences between the MSCs from different sources in response to the transdifferentiation protocol used here. These results may contribute to identifying the best source of MSCs for potential cell replacement therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA