Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Protein Sci ; 33(3): e4903, 2024 Mar.
Article En | MEDLINE | ID: mdl-38358137

The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.


Escherichia coli , Nitrogen Oxides , Proteins , Humans , Electron Spin Resonance Spectroscopy/methods , Escherichia coli/genetics , Escherichia coli/chemistry , HeLa Cells , Spin Labels , Proteins/chemistry
2.
iScience ; 26(10): 107855, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37766968

UreG is a cytosolic GTPase involved in the maturation network of urease, an Ni-containing bacterial enzyme. Previous investigations in vitro showed that UreG features a flexible tertiary organization, making this protein the first enzyme discovered to be intrinsically disordered. To determine whether this heterogeneous behavior is maintained in the protein natural environment, UreG structural dynamics was investigated directly in intact bacteria by in-cell EPR. This approach, based on site-directed spin labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy, enables the study of proteins in their native environment. The results show that UreG maintains heterogeneous structural landscape in-cell, existing in a conformational ensemble of two major conformers, showing either random coil-like or compact properties. These data support the physiological relevance of the intrinsically disordered nature of UreG and indicates a role of protein flexibility for this specific enzyme, possibly related to the regulation of promiscuous protein interactions for metal ion delivery.

3.
Molecules ; 28(3)2023 Jan 31.
Article En | MEDLINE | ID: mdl-36771013

Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the local level, the dynamics of structural transitions in proteins. Here, we consider SDSL-EPR based on the selective grafting of a nitroxide on the protein under study, followed by X-band cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give a reliable interpretation on biological system dynamics, a numerical simulation of the spectra is required. However, regardless of the numerical tool chosen to perform such simulations, the number of parameters is often too high to provide unambiguous results. In this study, we have chosen SimLabel to perform such simulations. SimLabel is a graphical user interface (GUI) of Matlab, using some functions of Easyspin. An exhaustive review of the parameters used in this GUI has enabled to define the adjustable parameters during the simulation fitting and to fix the others prior to the simulation fitting. Among them, some are set once and for all (gy, gz) and others are determined (Az, gx) thanks to a supplementary X-band spectrum recorded on a frozen solution. Finally, we propose guidelines to perform the simulation of X-band cw-EPR spectra of nitroxide labeled proteins at room temperature, with no need of uncommon higher frequency spectrometry and with the minimal number of variable parameters.


Nitrogen Oxides , Proteins , Electron Spin Resonance Spectroscopy/methods , Spin Labels , Nitrogen Oxides/chemistry , Proteins/chemistry
4.
Chem Commun (Camb) ; 59(10): 1274-1284, 2023 Jan 31.
Article En | MEDLINE | ID: mdl-36633152

Depicting how biomolecules move and interact within their physiological environment is one of the hottest topics of structural biology. This Feature Article gives an overview of the most recent advances in Site-directed Spin Labeling coupled to Electron Paramagnetic Resonance spectroscopy (SDSL-EPR) to study biomolecules in living cells. The high sensitivity, the virtual absence of background, and the versatility of spin-labeling strategies make this approach one of the most promising techniques for the study of biomolecules in physiologically relevant environments. After presenting the milestones achieved in this field, we present a summary of the future goals and ambitions of this community.


Spin Labels , Electron Spin Resonance Spectroscopy/methods
5.
Chemistry ; 28(66): e202202249, 2022 Nov 25.
Article En | MEDLINE | ID: mdl-36202758

One of the greatest current challenges in structural biology is to study protein dynamics over a wide range of timescales in complex environments, such as the cell. Among magnetic resonances suitable for this approach, electron paramagnetic resonance spectroscopy coupled to site-directed spin labeling (SDSL-EPR) has emerged as a promising tool to study protein local dynamics and conformational ensembles. In this work, we exploit the sensitivity of nitroxide labels to report protein local dynamics at room temperature. We demonstrate that such studies can be performed while preserving both the integrity of the cells and the activity of the protein under investigation. Using this approach, we studied the structural dynamics of the chaperone NarJ in its natural host, Escherichia coli. We established that spin-labeled NarJ is active inside the cell. We showed that the cellular medium affects NarJ structural dynamics in a site-specific way, while the structural flexibility of the protein is maintained. Finally, we present and discuss data on the time-resolved dynamics of NarJ in cellular context.


Molecular Chaperones , Nitrogen Oxides , Electron Spin Resonance Spectroscopy/methods , Spin Labels , Nitrogen Oxides/chemistry , Molecular Chaperones/chemistry
6.
Biomolecules ; 10(7)2020 07 16.
Article En | MEDLINE | ID: mdl-32708696

UreG is a P-loop GTP hydrolase involved in the maturation of nickel-containing urease, an essential enzyme found in plants, fungi, bacteria, and archaea. This protein couples the hydrolysis of GTP to the delivery of Ni(II) into the active site of apo-urease, interacting with other urease chaperones in a multi-protein complex necessary for enzyme activation. Whereas the conformation of Helicobacter pylori (Hp) UreG was solved by crystallography when it is in complex with two other chaperones, in solution the protein was found in a disordered and flexible form, defining it as an intrinsically disordered enzyme and indicating that the well-folded structure found in the crystal state does not fully reflect the behavior of the protein in solution. Here, isothermal titration calorimetry and site-directed spin labeling coupled to electron paramagnetic spectroscopy were successfully combined to investigate HpUreG structural dynamics in solution and the effect of Ni(II) and GTP on protein mobility. The results demonstrate that, although the protein maintains a flexible behavior in the metal and nucleotide bound forms, concomitant addition of Ni(II) and GTP exerts a structural change through the crosstalk of different protein regions.


Bacterial Proteins/metabolism , Guanosine Triphosphate/metabolism , Helicobacter pylori/metabolism , Nickel/metabolism , Phosphate-Binding Proteins/metabolism , Bacterial Proteins/chemistry , Crystallography, X-Ray , Helicobacter Infections/microbiology , Helicobacter pylori/chemistry , Humans , Models, Molecular , Phosphate-Binding Proteins/chemistry , Protein Conformation
...