Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
J Am Coll Cardiol ; 83(1): 47-59, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38171710

BACKGROUND: The lack of disease-modifying drugs is one of the major unmet needs in patients with heart failure (HF). Peptides are highly selective molecules with the potential to act directly on cardiomyocytes. However, a strategy for effective delivery of therapeutics to the heart is lacking. OBJECTIVES: In this study, the authors sought to assess tolerability and efficacy of an inhalable lung-to-heart nano-in-micro technology (LungToHeartNIM) for cardiac-specific targeting of a mimetic peptide (MP), a first-in-class for modulating impaired L-type calcium channel (LTCC) trafficking, in a clinically relevant porcine model of HF. METHODS: Heart failure with reduced ejection fraction (HFrEF) was induced in Göttingen minipigs by means of tachypacing over 6 weeks. In a setting of overt HFrEF (left ventricular ejection fraction [LVEF] 30% ± 8%), animals were randomized and treatment was started after 4 weeks of tachypacing. HFrEF animals inhaled either a dry powder composed of mannitol-based microparticles embedding biocompatible MP-loaded calcium phosphate nanoparticles (dpCaP-MP) or the LungToHeartNIM only (dpCaP without MP). Efficacy was evaluated with the use of echocardiography, invasive hemodynamics, and biomarker assessment. RESULTS: DpCaP-MP inhalation restored systolic function, as shown by an absolute LVEF increase over the treatment period of 17% ± 6%, while reversing cardiac remodeling and reducing pulmonary congestion. The effect was recapitulated ex vivo in cardiac myofibrils from treated HF animals. The treatment was well tolerated, and no adverse events occurred. CONCLUSIONS: The overall tolerability of LungToHeartNIM along with the beneficial effects of the LTCC modulator point toward a game-changing treatment for HFrEF patients, also demonstrating the effective delivery of a therapeutic peptide to the diseased heart.


Heart Failure , Animals , Chronic Disease , Lung , Peptides , Stroke Volume , Swine , Swine, Miniature , Ventricular Function, Left
3.
Circ Heart Fail ; 15(6): e009337, 2022 06.
Article En | MEDLINE | ID: mdl-35656822

BACKGROUND: We examined the effects of vericiguat compared with placebo in patients with heart failure with reduced ejection fraction enrolled in VICTORIA (Vericiguat Global Study in Patients With Heart Failure With Reduced Ejection Fraction) on health status outcomes measured by the Kansas City Cardiomyopathy Questionnaire (KCCQ) and evaluated whether clinical outcomes varied by baseline KCCQ score. METHODS: KCCQ was completed at baseline and 4, 16, and 32 weeks. We assessed treatment effect on KCCQ using a mixed-effects model adjusting for baseline KCCQ and stratification variables. Cox proportional-hazards modeling was performed to evaluate the effect of vericiguat on clinical outcomes by tertiles of baseline KCCQ clinical summary score (CSS), total symptom score (TSS), and overall summary score (OSS). RESULTS: Of 5050 patients, 4664, 4741, and 4470 had KCCQ CSS (median [25th to 75th], 65.6 [45.8-81.8]), TSS (68.8 [47.9-85.4]), and OSS (59.9 [42.0-77.1]) at baseline; 94%, 88%, and 82% had data at 4, 16, and 32 weeks. At 16 weeks, CSS improved by a median of 6.3 in both arms; no significant differences in improvement were seen for TSS and OSS between the 2 groups (P=0.69, 0.97, and 0.13 for CSS, TSS, and OSS). Trends were similar at 4 and 32 weeks. Vericiguat versus placebo reduced cardiovascular death or heart failure hospitalization risk similarly across tertiles of baseline KCCQ CSS, TSS, and OSS (interaction P=0.13, 0.21, and 0.65). CONCLUSIONS: Vericiguat did not significantly improve KCCQ scores compared with placebo. Vericiguat reduced the risk of cardiovascular death or heart failure hospitalization across the range of baseline health status. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02861534.


Heart Failure , Heart Failure/diagnosis , Heart Failure/drug therapy , Heterocyclic Compounds, 2-Ring , Humans , Pyrimidines , Quality of Life , Stroke Volume , Treatment Outcome
4.
Clin Res Cardiol ; 111(2): 186-196, 2022 Feb.
Article En | MEDLINE | ID: mdl-34013386

BACKGROUND: Ethnic disparities have been reported in cardiovascular disease. However, ethnic disparities in takotsubo syndrome (TTS) remain elusive. This study assessed differences in clinical characteristics between Japanese and European TTS patients and determined the impact of ethnicity on in-hospital outcomes. METHODS: TTS patients in Japan were enrolled from 10 hospitals and TTS patients in Europe were enrolled from 32 hospitals participating in the International Takotsubo Registry. Clinical characteristics and in-hospital outcomes were compared between Japanese and European patients. RESULTS: A total of 503 Japanese and 1670 European patients were included. Japanese patients were older (72.6 ± 11.4 years vs. 68.0 ± 12.0 years; p < 0.001) and more likely to be male (18.5 vs. 8.4%; p < 0.001) than European TTS patients. Physical triggering factors were more common (45.5 vs. 32.0%; p < 0.001), and emotional triggers less common (17.5 vs. 31.5%; p < 0.001), in Japanese patients than in European patients. Japanese patients were more likely to experience cardiogenic shock during the acute phase (15.5 vs. 9.0%; p < 0.001) and had a higher in-hospital mortality (8.2 vs. 3.2%; p < 0.001). However, ethnicity itself did not appear to have an impact on in-hospital mortality. Machine learning approach revealed that the presence of physical stressors was the most important prognostic factor in both Japanese and European TTS patients. CONCLUSION: Differences in clinical characteristics and in-hospital outcomes between Japanese and European TTS patients exist. Ethnicity does not impact the outcome in TTS patients. The worse in-hospital outcome in Japanese patients, is mainly driven by the higher prevalence of physical triggers. TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique Identifier: NCT01947621.


Asian People/statistics & numerical data , Takotsubo Cardiomyopathy/ethnology , White People/statistics & numerical data , Aged , Asian People/ethnology , Europe/epidemiology , Female , Health Status Disparities , Hospital Mortality/ethnology , Humans , Japan/epidemiology , Male , Middle Aged , Prevalence , Registries , Shock, Cardiogenic/ethnology , Shock, Cardiogenic/mortality , Takotsubo Cardiomyopathy/mortality , White People/ethnology
5.
Front Cardiovasc Med ; 8: 739907, 2021.
Article En | MEDLINE | ID: mdl-34778401

Background: Obesity can influence the structure and function of the atrium, but most studies focused on the relationship of body mass index (BMI) and overt left atrium (LA) dysfunction as assessed by clinical imaging. We combined the assessment of right atrium (RA) function in vivo and in vitro in obese and non-obese patients scheduled for elective cardiac surgery. Methods: Atrial structure and function were quantified pre-operatively by echocardiography. RA tissue removed for the establishment of extracorporeal support was collected and RA trabeculae function was quantified in vitro at baseline and with adrenergic stimulation (isoproterenol). Fatty acid-binding protein 3 (FABP3) was quantified in RA tissue. Results were stratified according to the BMI of the patients. Results: About 76 patients were included pre-operatively for the echocardiographic analysis. RA trabeculae function at baseline was finally quantified from 46 patients and RA function in 28 patients was also assessed with isoproterenol. There was no significant correlation between BMI and the parameters of atrial function measured by the clinical echocardiography. However, in vitro measurements revealed a significant correlation between BMI and a prolonged relaxation of the atrial myocardium at baseline, which persisted after controlling for the atrial fibrillation and diabetes by the partial correlation analysis. Acceleration of relaxation with isoproterenol was significantly lower in the obese group (BMI ≥ 30 kg/m2). As a result, relaxation with adrenergic stimulation in the obese group remained significantly higher compared to the overweight group (25 kg/m2 ≤ BMI < 30 kg/m2, p = 0.027) and normal group (18.5 kg/m2 ≤ BMI < 25 kg/m2, p = 0.036). There were no differences on impacts of the isoproterenol on (systolic) developed force between groups. The expression of FABP3 in the obese group was significantly higher compared to the normal group (p = 0.049) and the correlation analysis showed the significant correlations between the level of FABP3 in the RA trabeculae function. Conclusion: A higher BMI is associated with the early subclinical changes of RA myocardial function with the slowed relaxation and reduced adrenergic lusitropy.

6.
PLoS One ; 16(8): e0255976, 2021.
Article En | MEDLINE | ID: mdl-34411149

BACKGROUND: Cardiac injury associated with cytokine release frequently occurs in SARS-CoV-2 mediated coronavirus disease (COVID19) and mortality is particularly high in these patients. The mechanistic role of the COVID19 associated cytokine-storm for the concomitant cardiac dysfunction and associated arrhythmias is unclear. Moreover, the role of anti-inflammatory therapy to mitigate cardiac dysfunction remains elusive. AIMS AND METHODS: We investigated the effects of COVID19-associated inflammatory response on cardiac cellular function as well as its cardiac arrhythmogenic potential in rat and induced pluripotent stem cell derived cardiomyocytes (iPS-CM). In addition, we evaluated the therapeutic potential of the IL-1ß antagonist Canakinumab using state of the art in-vitro confocal and ratiometric high-throughput microscopy. RESULTS: Isolated rat ventricular cardiomyocytes were exposed to control or COVID19 serum from intensive care unit (ICU) patients with severe ARDS and impaired cardiac function (LVEF 41±5%; 1/3 of patients on veno-venous extracorporeal membrane oxygenation; CK 154±43 U/l). Rat cardiomyocytes showed an early increase of myofilament sensitivity, a decrease of Ca2+ transient amplitudes and altered baseline [Ca2+] upon exposure to patient serum. In addition, we used iPS-CM to explore the long-term effect of patient serum on cardiac electrical and mechanical function. In iPS-CM, spontaneous Ca2+ release events were more likely to occur upon incubation with COVID19 serum and nuclear as well as cytosolic Ca2+ release were altered. Co-incubation with Canakinumab had no effect on pro-arrhythmogenic Ca2+ release or Ca2+ signaling during excitation-contraction coupling, nor significantly influenced cellular automaticity. CONCLUSION: Serum derived from COVID19 patients exerts acute cardio-depressant and chronic pro-arrhythmogenic effects in rat and iPS-derived cardiomyocytes. Canakinumab had no beneficial effect on cellular Ca2+ signaling during excitation-contraction coupling. The presented method utilizing iPS-CM and in-vitro Ca2+ imaging might serve as a novel tool for precision medicine. It allows to investigate cytokine related cardiac dysfunction and pharmacological approaches useful therein.


Antibodies, Monoclonal, Humanized/pharmacology , Arrhythmias, Cardiac , COVID-19 Drug Treatment , COVID-19 , Calcium Signaling/drug effects , Myocytes, Cardiac , SARS-CoV-2/metabolism , Adult , Aged , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , COVID-19/complications , COVID-19/metabolism , COVID-19/pathology , Calcium/metabolism , Drug Evaluation, Preclinical , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Middle Aged , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Rats, Sprague-Dawley , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
7.
ESC Heart Fail ; 8(3): 1806-1818, 2021 06.
Article En | MEDLINE | ID: mdl-33768692

AIMS: Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT). METHODS AND RESULTS: Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo-4, confocal) were compared in ZSF-1 obese (metabolic syndrome, HFpEF) and ZSF-1 lean (control) 21- and 28-week-old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca2+ reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+ ] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1-5 Hz), MICT accelerated early Ca2+ release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+ ] or cytosolic Ca2+ load at basal or increased pacing rate (1-5 Hz). MICT lowered pro-arrhythmogenic Ca2+ sparks and attenuated Ca2+ -wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. CONCLUSIONS: In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end-diastolic volume, and cellular arrhythmogenicity.


Heart Failure , Animals , Echocardiography , Myocytes, Cardiac , Rats , Sarcoplasmic Reticulum , Stroke Volume
8.
Cardiovasc Diabetol ; 20(1): 7, 2021 01 07.
Article En | MEDLINE | ID: mdl-33413413

BACKGROUND: Sodium-glucose linked transporter type 2 (SGLT-2) inhibition has been shown to reduce cardiovascular mortality in heart failure independently of glycemic control and prevents the onset of atrial arrhythmias, a common co-morbidity in heart failure with preserved ejection fraction (HFpEF). The mechanism behind these effects is not fully understood, and it remains unclear if they could be further enhanced by additional SGLT-1 inhibition. We investigated the effects of chronic treatment with the dual SGLT-1&2 inhibitor sotagliflozin on left atrial (LA) remodeling and cellular arrhythmogenesis (i.e. atrial cardiomyopathy) in a metabolic syndrome-related rat model of HFpEF. METHODS: 17 week-old ZSF-1 obese rats, a metabolic syndrome-related model of HFpEF, and wild type rats (Wistar Kyoto), were fed 30 mg/kg/d sotagliflozin for 6 weeks. At 23 weeks, LA were imaged in-vivo by echocardiography. In-vitro, Ca2+ transients (CaT; electrically stimulated, caffeine-induced) and spontaneous Ca2+ release were recorded by ratiometric microscopy using Ca2+-sensitive fluorescent dyes (Fura-2) during various experimental protocols. Mitochondrial structure (dye: Mitotracker), Ca2+ buffer capacity (dye: Rhod-2), mitochondrial depolarization (dye: TMRE) and production of reactive oxygen species (dye: H2DCF) were visualized by confocal microscopy. Statistical analysis was performed with 2-way analysis of variance followed by post-hoc Bonferroni and student's t-test, as applicable. RESULTS: Sotagliflozin ameliorated LA enlargement in HFpEF in-vivo. In-vitro, LA cardiomyocytes in HFpEF showed an increased incidence and amplitude of arrhythmic spontaneous Ca2+ release events (SCaEs). Sotagliflozin significantly reduced the magnitude of SCaEs, while their frequency was unaffected. Sotagliflozin lowered diastolic [Ca2+] of CaT at baseline and in response to glucose influx, possibly related to a ~ 50% increase of sodium sodium-calcium exchanger (NCX) forward-mode activity. Sotagliflozin prevented mitochondrial swelling and enhanced mitochondrial Ca2+ buffer capacity in HFpEF. Sotagliflozin improved mitochondrial fission and reactive oxygen species (ROS) production during glucose starvation and averted Ca2+ accumulation upon glycolytic inhibition. CONCLUSION: The SGLT-1&2 inhibitor sotagliflozin ameliorated LA remodeling in metabolic HFpEF. It also improved distinct features of Ca2+-mediated cellular arrhythmogenesis in-vitro (i.e. magnitude of SCaEs, mitochondrial Ca2+ buffer capacity, diastolic Ca2+ accumulation, NCX activity). The safety and efficacy of combined SGLT-1&2 inhibition for the treatment and/or prevention of atrial cardiomyopathy associated arrhythmias should be further evaluated in clinical trials.


Arrhythmias, Cardiac/prevention & control , Atrial Function, Left/drug effects , Atrial Remodeling/drug effects , Glycosides/pharmacology , Heart Atria/drug effects , Heart Failure/drug therapy , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/metabolism , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Calcium Signaling/drug effects , Disease Models, Animal , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/physiopathology , Metabolic Syndrome/complications , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Dynamics/drug effects , Mitochondrial Swelling/drug effects , Rats, Inbred WKY , Rats, Zucker , Reactive Oxygen Species/metabolism , Sodium-Calcium Exchanger/metabolism , Sodium-Glucose Transporter 1/metabolism
9.
ESC Heart Fail ; 8(1): 333-343, 2021 02.
Article En | MEDLINE | ID: mdl-33283476

AIMS: This study aimed to evaluate the impact of coronavirus disease 2019 (Covid-19) outbreak on admissions for acute myocardial infarction (AMI) and related mortality, severity of presentation, major cardiac complications and outcome in a tertiary-care university hospital in Berlin, Germany. METHODS AND RESULTS: In a single-centre cross-sectional observational study, we included 355 patients with AMI containing ST-elevation or non-ST-elevation myocardial infarction (STEMI or NSTEMI), admitted for emergency cardiac catheterization between January and April 2020 and the equivalent time in 2019. During the early phase of the Covid-19 pandemic (e-COV) in Berlin (March and April 2020), admissions for AMI halved compared with those in the pre-Covid-19 time (January and February 2020; pre-COV) and with those in the corresponding months in 2019. However, mortality for AMI increased substantially from 5.2% pre-COV to 17.7% (P < 0.05) during e-COV. Severity of presentation for AMI was more pronounced during e-COV [increased levels of cardiac enzymes, reduced left ventricular ejection fraction (LVEF), an increase in the need of inotropic support by 25% (P < 0.01)], while patients' demographic and angiographic characteristics did not differ between pre-COV and e-COV. Time from symptom onset to first medical contact was prolonged in all AMI during e-COV (presentation > 72 h +21% in STEMI, p = 0.04 and presentation > 72 h in NSTEMI +22%, p = 0.02). Door to balloon time was similar in STEMI patients, while time from first medical contact to revascularization was significantly delayed in NSTEMI patients (p = 0.02). Major cardiac complications after AMI occurred significantly more often, and cardiac recovery was worse in e-COV than in pre-COV, demonstrated by a significantly lower LVEF (39 ± 16 vs. 46 ± 16, p < 0.05) at hospital discharge and substantially higher NTproBNP levels. CONCLUSIONS: The Covid-19 outbreak affects hospital admissions for acute coronary syndromes. During the first phase of the pandemia, significantly less patients with AMI were admitted, but those admitted presented with a more severe phenotype and had a higher mortality, more complications, and a worse short-term outcome. Therefore, our data indicate that Covid-19 had relevant impact on non-infectious disease states, such as acute coronary syndromes.


COVID-19/epidemiology , Myocardial Infarction/mortality , Acute Disease , Aged , Berlin/epidemiology , COVID-19/complications , Cross-Sectional Studies , Humans , Male , Middle Aged , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Treatment Outcome
10.
Eur J Heart Fail ; 22(2): 330-337, 2020 02.
Article En | MEDLINE | ID: mdl-31863563

AIMS: The aim of the present study was to investigate the impact of aspirin on prognosis in takotsubo syndrome (TTS). METHODS AND RESULTS: Patients from the International Takotsubo (InterTAK) Registry were categorized into two groups based on aspirin prescription at discharge. A comparison of clinical outcomes between groups was performed using an adjusted analysis with propensity score (PS) stratification; results from the unadjusted analysis were also reported to note the effect of the PS adjustment. Major adverse cardiac and cerebrovascular events (MACCE: a composite of death, myocardial infarction, TTS recurrence, stroke or transient ischaemic attack) were assessed at 30-day and 5-year follow-up. A total of 1533 TTS patients with known status regarding aspirin prescription at discharge were included. According to the adjusted analysis based on PS stratification, aspirin was not associated with a lower hazard of MACCE at 30-day [hazard ratio (HR) 1.24, 95% confidence interval (CI) 0.50-3.04, P = 0.64] or 5-year follow-up (HR 1.11, 95% CI 0.78-1.58, P = 0.58). These results were confirmed by sensitivity analyses performed with alternative PS-based methods, i.e. covariate adjustment and inverse probability of treatment weighting. CONCLUSION: In the present study, no association was found between aspirin use in TTS patients and a reduced risk of MACCE at 30-day and 5-year follow-up. These findings should be confirmed in adequately powered randomized controlled trials. ClinicalTrials.gov Identifier: NCT01947621.


Aspirin/therapeutic use , Takotsubo Cardiomyopathy , Heart Failure , Humans , Ischemic Attack, Transient , Myocardial Infarction , Platelet Aggregation Inhibitors/therapeutic use , Propensity Score , Recurrence , Registries , Stroke , Takotsubo Cardiomyopathy/drug therapy , Takotsubo Cardiomyopathy/epidemiology , Treatment Outcome
11.
Eur Heart J ; 40(26): 2142-2151, 2019 07 01.
Article En | MEDLINE | ID: mdl-31098611

AIMS: We aimed to evaluate the frequency, clinical features, and prognostic implications of cardiac arrest (CA) in takotsubo syndrome (TTS). METHODS AND RESULTS: We reviewed the records of patients with CA and known heart rhythm from the International Takotsubo Registry. The main outcomes were 60-day and 5-year mortality. In addition, predictors of mortality and predictors of CA during the acute TTS phase were assessed. Of 2098 patients, 103 patients with CA and known heart rhythm during CA were included. Compared with patients without CA, CA patients were more likely to be younger, male, and have apical TTS, atrial fibrillation (AF), neurologic comorbidities, physical triggers, and longer corrected QT-interval and lower left ventricular ejection fraction on admission. In all, 57.1% of patients with CA at admission had ventricular fibrillation/tachycardia, while 73.7% of patients with CA in the acute phase had asystole/pulseless electrical activity. Patients with CA showed higher 60-day (40.3% vs. 4.0%, P < 0.001) and 5-year mortality (68.9% vs. 16.7%, P < 0.001) than patients without CA. T-wave inversion and intracranial haemorrhage were independently associated with higher 60-day mortality after CA, whereas female gender was associated with lower 60-day mortality. In the acute phase, CA occurred less frequently in females and more frequently in patients with AF, ST-segment elevation, and higher C-reactive protein on admission. CONCLUSIONS: Cardiac arrest is relatively frequent in TTS and is associated with higher short- and long-term mortality. Clinical and electrocardiographic parameters independently predicted mortality after CA.


Heart Arrest/etiology , Takotsubo Cardiomyopathy/complications , Female , Heart Arrest/diagnosis , Heart Arrest/epidemiology , Heart Arrest/mortality , Humans , Male , Middle Aged , Prognosis , Registries , Retrospective Studies , Survival Analysis
12.
J Mol Cell Cardiol ; 131: 53-65, 2019 06.
Article En | MEDLINE | ID: mdl-31005484

AIMS: Atrial contractile dysfunction is associated with increased mortality in heart failure (HF). We have shown previously that a metabolic syndrome-based model of HFpEF and a model of hypertensive heart disease (HHD) have impaired left atrial (LA) function in vivo (rat). In this study we postulate, that left atrial cardiomyocyte (CM) and cardiac fibroblast (CF) paracrine interaction related to the inositol 1,4,5-trisphosphate signalling cascade is pivotal for the manifestation of atrial mechanical dysfunction in HF and that quantitative atrial remodeling is highly disease-dependent. METHODS AND RESULTS: Differential remodeling was observed in HHD and HFpEF as indicated by an increase of atrial size in vivo (HFpEF), unchanged fibrosis (HHD and HFpEF) and a decrease of CM size (HHD). Baseline contractile performance of rat CM in vitro was enhanced in HFpEF. Upon treatment with conditioned medium from their respective stretched CF (CM-SF), CM (at 21 weeks) of WT showed increased Ca2+ transient (CaT) amplitudes related to the paracrine activity of the inotrope endothelin (ET-1) and inositol 1,4,5-trisphosphate induced Ca2+ release. Concentration of ET-1 was increased in CM-SF and atrial tissue from WT as compared to HHD and HFpEF. In HHD, CM-SF had no relevant effect on CaT kinetics. However, in HFpEF, CM-SF increased diastolic Ca2+ and slowed Ca2+ removal, potentially contributing to an in-vivo decompensation. During disease progression (i.e. at 27 weeks), HFpEF displayed dysfunctional excitation-contraction-coupling (ECC) due to lower sarcoplasmic-reticulum Ca2+ content unrelated to CF-CM interaction or ET-1, but associated with enhanced nuclear [Ca2+]. In human patients, tissue ET-1 was not related to the presence of arterial hypertension or obesity. CONCLUSIONS: Atrial remodeling is a complex entity that is highly disease and stage dependent. The activity of fibrosis related to paracrine interaction (e.g. ET-1) might contribute to in vitro and in vivo atrial dysfunction. However, during later stages of disease, ECC is impaired unrelated to CF.


Fibroblasts/cytology , Fibroblasts/metabolism , Heart Failure/metabolism , Hypertension/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Animals , Atrial Fibrillation/metabolism , Atrial Remodeling/physiology , Cell Communication/physiology , Echocardiography , Heart Atria/metabolism , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Male , Rats
14.
J Vis Exp ; (137)2018 07 26.
Article En | MEDLINE | ID: mdl-30102264

In this article, we describe an optimized, Langendorff-based procedure for the isolation of single-cell atrial cardiomyocytes (ACMs) from a rat model of metabolic syndrome (MetS)-related heart failure with preserved ejection fraction (HFpEF). The prevalence of MetS-related HFpEF is rising, and atrial cardiomyopathies associated with atrial remodeling and atrial fibrillation are clinically highly relevant as atrial remodeling is an independent predictor of mortality. Studies with isolated single-cell cardiomyocytes are frequently used to corroborate and complement in vivo findings. Circulatory vessel rarefication and interstitial tissue fibrosis pose a potentially limiting factor for the successful single-cell isolation of ACMs from animal models of this disease. We have addressed this issue by employing a device capable of manually regulating the intraluminal pressure of cardiac cavities during the isolation procedure, substantially increasing the yield of morphologically and functionally intact ACMs. The acquired cells can be used in a variety of different experiments, such as cell culture and functional Calcium imaging (i.e., excitation-contraction-coupling). We provide the researcher with a step-by-step protocol, a list of optimized solutions, thorough instructions to prepare the necessary equipment, and a comprehensive troubleshooting guide. While the initial implementation of the procedure might be rather difficult, a successful adaptation will allow the reader to perform state-of-the-art ACM isolations in a rat model of MetS-related HFpEF for a broad spectrum of experiments.


Heart Failure/physiopathology , Metabolic Syndrome/complications , Myocytes, Cardiac/metabolism , Stroke Volume/physiology , Animals , Disease Models, Animal , Humans , Rats
15.
J Am Coll Cardiol ; 72(8): 874-882, 2018 08 21.
Article En | MEDLINE | ID: mdl-30115226

BACKGROUND: Prognosis of Takotsubo syndrome (TTS) remains controversial due to scarcity of available data. Additionally, the effect of the triggering factors remains elusive. OBJECTIVES: This study compared prognosis between TTS and acute coronary syndrome (ACS) patients and investigated short- and long-term outcomes in TTS based on different triggers. METHODS: Patients with TTS were enrolled from the International Takotsubo Registry. Long-term mortality of patients with TTS was compared to an age- and sex-matched cohort of patients with ACS. In addition, short- and long-term outcomes were compared between different groups according to triggering conditions. RESULTS: Overall, TTS patients had a comparable long-term mortality risk with ACS patients. Of 1,613 TTS patients, an emotional trigger was detected in 485 patients (30%). Of 630 patients (39%) related to physical triggers, 98 patients (6%) had acute neurologic disorders, while in the other 532 patients (33%), physical activities, medical conditions, or procedures were the triggering conditions. The remaining 498 patients (31%) had no identifiable trigger. TTS patients related to physical stress showed higher mortality rates than ACS patients during long-term follow-up, whereas patients related to emotional stress had better outcomes compared with ACS patients. CONCLUSIONS: Overall, TTS patients had long-term outcomes comparable to age- and sex-matched ACS patients. Also, we demonstrated that TTS can either be benign or a life-threating condition depending on the inciting stress factor. We propose a new classification based on triggers, which can serve as a clinical tool to predict short- and long-term outcomes of TTS. (International Takotsubo Registry [InterTAK Registry]; NCT01947621).


Registries , Takotsubo Cardiomyopathy/diagnosis , Takotsubo Cardiomyopathy/mortality , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/mortality , Acute Coronary Syndrome/physiopathology , Aged , Aged, 80 and over , Electroencephalography/mortality , Electroencephalography/trends , Female , Follow-Up Studies , Humans , Male , Middle Aged , Mortality/trends , Nervous System Diseases/diagnosis , Nervous System Diseases/physiopathology , Prognosis , Stress, Psychological/diagnosis , Stress, Psychological/mortality , Stress, Psychological/physiopathology , Takotsubo Cardiomyopathy/physiopathology , Takotsubo Cardiomyopathy/psychology , Time Factors
16.
Heart Rhythm ; 15(9): 1328-1336, 2018 09.
Article En | MEDLINE | ID: mdl-29803020

BACKGROUND: Arterial hypertension (HT) contributes to progression of atrial fibrillation (AF) via unknown mechanisms. OBJECTIVE: We aimed to characterize electrical and structural changes accounting for increased AF stability in a large animal model of rapid atrial pacing (RAP)-induced AF combined with desoxycorticosterone acetate (DOCA)-induced HT. METHODS: Eighteen pigs were instrumented with right atrial endocardial pacemaker leads and custom-made pacemakers to induce AF by continuous RAP (600 beats/min). DOCA pellets were subcutaneously implanted in a subgroup of 9 animals (AF+HT group); the other 9 animals served as controls (AF group). Final experiments included electrophysiology studies, endocardial electroanatomic mapping, and high-density mapping with epicardial multielectrode arrays. In addition, 3-dimensional computational modeling was performed. RESULTS: DOCA implantation led to secondary HT (median [interquartile range] aortic pressure 109.9 [100-137] mm Hg in AF+HT vs 82.2 [79-96] mm Hg in AF; P < .05), increased AF stability (55.6% vs 12.5% of animals with AF episodes lasting >1 hour; P < .05), concentric left ventricular hypertrophy, atrial dilatation (119 ± 31 cm2 in AF+HT vs 78 ± 23 cm2 in AF; P < .05), and fibrosis. Collagen accumulation in the AF+HT group was mainly found in non-intermyocyte areas (1.62 ± 0.38 cm3 in AF+HT vs 0.96 ± 0.3 cm3 in AF; P < .05). Left and right atrial effective refractory periods, action potential durations, endo- and epicardial conduction velocities, and measures of AF complexity were comparable between the 2 groups. A 3-dimensional computational model confirmed an increase in AF stability observed in the in vivo experiments associated with increased atrial size. CONCLUSION: In this model of secondary HT, higher AF stability after 2 weeks of RAP is mainly driven by atrial dilatation.


Atrial Fibrillation/physiopathology , Atrial Remodeling , Blood Pressure/physiology , Computer Simulation , Heart Atria/physiopathology , Heart Rate/physiology , Hypertension/complications , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/therapy , Disease Models, Animal , Electrocardiography , Heart Atria/diagnostic imaging , Hypertension/physiopathology , Pacemaker, Artificial , Swine
17.
Am J Physiol Heart Circ Physiol ; 315(3): H669-H680, 2018 09 01.
Article En | MEDLINE | ID: mdl-29727215

Experimental data indicate that stimulation of the nitric oxide-soluble guanylate cyclase(sGC)-cGMP-PKG pathway can increase left ventricular (LV) capacitance via phosphorylation of the myofilamental protein titin. We aimed to test whether acute pharmacological sGC stimulation with BAY 41-8543 would increase LV capacitance via titin phosphorylation in healthy and deoxycorticosteroneacetate (DOCA)-induced hypertensive pigs. Nine healthy Landrace pigs and 7 pigs with DOCA-induced hypertension and LV concentric hypertrophy were acutely instrumented to measure LV end-diastolic pressure-volume relationships (EDPVRs) at baseline and during intravenous infusion of BAY 41-8543 (1 and 3 µg·kg-1·min-1 for 30 min, respectively). Separately, in seven healthy and six DOCA pigs, transmural LV biopsies were harvested from the beating heart to measure titin phosphorylation during BAY 41-8543 infusion. LV EDPVRs before and during BAY 41-8543 infusion were superimposable in both healthy and DOCA-treated pigs, whereas mean aortic pressure decreased by 20-30 mmHg in both groups. Myocardial titin phosphorylation was unchanged in healthy pigs, but total and site-specific (Pro-Glu-Val-Lys and N2-Bus domains) titin phosphorylation was increased in DOCA-treated pigs. Bicoronary nitroglycerin infusion in healthy pigs ( n = 5) induced a rightward shift of the LV EDPVR, demonstrating the responsiveness of the pathway in this model. Acute systemic sGC stimulation with the sGC stimulator BAY 41-8543 did not recruit an LV preload reserve in both healthy and hypertrophied LV porcine myocardium, although it increased titin phosphorylation in the latter group. Thus, increased titin phosphorylation is not indicative of increased in vivo LV capacitance. NEW & NOTEWORTHY We demonstrate that acute pharmacological stimulation of soluble guanylate cyclase does not increase left ventricular compliance in normal and hypertrophied porcine hearts. Effects of long-term soluble guanylate cyclase stimulation with oral compounds in disease conditions associated with lowered myocardial cGMP levels, i.e., heart failure with preserved ejection fraction, remain to be investigated.


Cardiomegaly/metabolism , Heart Ventricles/metabolism , Soluble Guanylyl Cyclase/metabolism , Vascular Capacitance , Animals , Blood Pressure , Cardiomegaly/etiology , Cardiomegaly/physiopathology , Connectin/metabolism , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Desoxycorticosterone Acetate/toxicity , Female , Heart Ventricles/drug effects , Morpholines/pharmacology , Nitroglycerin/pharmacology , Pyrimidines/pharmacology , Swine , Vasodilator Agents/pharmacology , Ventricular Function, Left
18.
Pacing Clin Electrophysiol ; 41(7): 720-726, 2018 07.
Article En | MEDLINE | ID: mdl-29663449

OBJECTIVE: Application of therapeutic mild hypothermia in patients after resuscitation, often accompanied by myocardial infarction, cardiogenic shock, and systemic inflammation may impact on cardiac rhythm. We therefore tested susceptibility to atrial arrhythmias during hyperthermia (HT, 40.5°C), normothermia (NT, 38.0°C), and mild hypothermia (MH, 33.0°C). METHODS: Nine healthy, anesthetized closed-chest landrace pigs were instrumented with a quadripolar stimulation catheter in the high right atrium and a decapolar catheter in the coronary sinus. Twelve-lead surface electrograms were recorded and core body temperature was altered to HT, NT, and MH using external warming or intravascular cooling. Repetitive measurements of effective atrial refractory period (AERP), atrial fibrillation (AF) inducibility, and electrocardiogram (ECG) parameters at different heart rates were performed. RESULTS: During MH, AERP was significantly longer while the inducibility of AF was significantly higher compared to NT and HT (median [range]: HT 18 (0, 80)%; NT 25 (0, 80)%; MH 68 (0, 100)%; P < 0.05 MH vs NT+HT). Mean AF duration did not differ between groups. Arterial potassium levels decreased with falling temperatures (HT: 4.2 ± 0.1 mmol/L; NT: 4.0 ± 0.2 mmol/L; MH: 3.5 ± 0.1 mmol/L; P < 0.001). Surface ECGs during MH showed reduced spontaneous heart rate (HT: 99 ± 13 beats/min; NT: 87 ± 15 beats/min; MH: 66 ± 10 beats/min; P < 0.05), increased PQ, stim-Q, and QT intervals (P < 0.01) but no change in QRS duration or time from peak to end of the T wave interval. CONCLUSION: Our data imply that MH represents an arrhythmic substrate rendering the atria more susceptible to AF although conduction times as well as refractory periods are increased. Further investigations on potential electrophysiological limits of therapeutic cooling in patients are required.


Atrial Fibrillation/etiology , Disease Models, Animal , Hypothermia, Induced , Swine , Animals , Hypothermia, Induced/methods
19.
J Mol Cell Cardiol ; 115: 10-19, 2018 02.
Article En | MEDLINE | ID: mdl-29289652

Heart failure (HF) with preserved ejection fraction (HFpEF) is present in about 50% of HF patients. Atrial remodeling is common in HFpEF and associated with increased mortality. We postulate that atrial remodeling is associated with atrial dysfunction in vivo related to alterations in cardiomyocyte Calcium (Ca) signaling and remodeling. We examined atrial function in vivo and Ca transients (CaT) (Fluo4-AM, field stim) in atrial cardiomyocytes of ZSF-1 rats without (Ln; lean hypertensive) and with metabolic syndrome (Ob; obese, hypertensive, diabetic) and HFpEF. RESULTS: At 21weeks Ln showed an increased left ventricular (LV) mass and left ventricular end-diastolic pressure (LVEDP), but unchanged left atrial (LA) size and preserved atrial ejection fraction vs. wild-type (WT). CaT amplitude in atrial cardiomyocytes was increased in Ln (2.9±0.2 vs. 2.3±0.2F/F0 in WT; n=22 cells/group; p<0.05). Studying subcellular Ca release in more detail, we found that local central cytosolic CaT amplitude was increased, while subsarcolemmal CaT amplitudes remained unchanged. Moreover, Sarcoplasmic reticulum (SR) Ca content (caffeine) was preserved while Ca spark frequency and tetracaine-dependent SR Ca leak were significantly increased in Ln. Ob mice developed a HFpEF phenotype in vivo, LA area was significantly increased and atrial in vivo function was impaired, despite increased atrial CaT amplitudes in vitro (2.8±0.2; p<0.05 vs. WT). Ob cells showed alterations of the tubular network possibly contributing to the observed phenotype. CaT kinetics as well as SR Ca in Ob were not significantly different from WT, but SR Ca leak remained increased. Angiotensin II (Ang II) reduced in vitro cytosolic CaT amplitudes and let to active nuclear Ca release in Ob but not in Ln or WT. SUMMARY: In hypertensive ZSF-1 rats, a possibly compensatory increase of cytosolic CaT amplitude and increased SR Ca leak precede atrial remodeling and HFpEF. Atrial remodeling in ZSF-1 HFpEF is associated with an altered tubular network in-vitro and atrial contractile dysfunction in vivo, indicating insufficient compensation. Atrial cardiomyocyte dysfunction in vitro is induced by the addition of angiotensin II.


Heart Atria/physiopathology , Heart Failure/physiopathology , Metabolic Syndrome/physiopathology , Stroke Volume , Angiotensin II , Animals , Atrial Remodeling , Calcium/metabolism , Calcium Signaling , Cell Nucleus/metabolism , Cytosol/metabolism , Disease Models, Animal , Excitation Contraction Coupling , Heart Failure/complications , Heart Ventricles/physiopathology , Hypertension/complications , Hypertension/physiopathology , Metabolic Syndrome/complications , Myocytes, Cardiac/metabolism , Rats , Sarcoplasmic Reticulum/metabolism
20.
J Electrocardiol ; 49(2): 124-31, 2016.
Article En | MEDLINE | ID: mdl-26803554

Mechanisms underlying atrial remodeling toward atrial fibrillation (AF) are incompletely understood. We induced AF in 16 pigs by 6weeks of rapid atrial pacing (RAP, 600bpm) using a custom-built, telemetrically controlled pacemaker. AF evolution was monitored three times per week telemetrically in unstressed, conscious animals. We established a dose-response relationship between RAP duration and occurrence of sustained AF >60minutes. Left atrial (LA) dilatation was present already at 2weeks of RAP. There was no evidence of left ventricular heart failure after 6weeks of RAP. As a proof-of-principle, arterial hypertension was induced in 5/16 animals by implanting desoxycorticosterone acetate (DOCA, an aldosterone-analog) subcutaneously to accelerate atrial remodeling. RAP+DOCA resulted in increased AF stability with earlier onset of sustained AF and accelerated anatomical atrial remodeling with more pronounced LA dilatation. This novel porcine model can serve to characterize effects of maladaptive stimuli or protective interventions specifically during early AF.


Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Disease Models, Animal , Pacemaker, Artificial , Prostheses and Implants , Telemetry/instrumentation , Animals , Equipment Design , Equipment Failure Analysis , Female , Swine , Telemetry/methods
...