Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 403: 130849, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759894

RESUMEN

Graphene oxide (GO) addition to anaerobic digestion has been suggested to enhance direct electron transfer. The impact of GO (0.075 g GO g-1 VS) and biologically and hydrothermally reduced GO (bio-rGO and h-rGO, respectively) on the methane production kinetics and removal of 12 pharmaceuticals was assessed in Fed-batch reactors. A decrease of 15 % in methane production was observed in the tests with GO addition compared with the control and the h-rGO. However, bio-rGO and h-rGO substantially increased the methane production rate compared to the control tests (+40 %), in the third fed-batch test. Removal of pharmaceuticals was enhanced only during the bio-reduction of GO (1st fed-batch test), whereas once the GO was bio-reduced, it followed a similar trend in the control and h-rGO tests. The addition of GO can enhance the methane production rate and, therefore, reduce the anaerobic treatment time.


Asunto(s)
Reactores Biológicos , Grafito , Metano , Metano/metabolismo , Metano/biosíntesis , Cinética , Anaerobiosis , Preparaciones Farmacéuticas/metabolismo , Oxidación-Reducción , Biodegradación Ambiental
2.
Bioresour Technol ; 383: 129252, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37268091

RESUMEN

The addition of conductive materials to the anaerobic digestion bioreactor was suggested to enhance microbial activity. In the present work, an anaerobic membrane bioreactor treating municipal wastewater was operated for 385 days. The impact of different graphene oxide concentrations on the removal target pharmaceuticals and microbial community dynamics was investigated. The addition of graphene oxide did not impact the reactor stability, whereas the removals of antibiotics (e.g., trimethoprim and metronidazole) were enhanced. A shift in the microbial community was detected after the addition of 50-900 mg L-1 of graphene oxide, with the proliferation hydrogenotrophic methanogens. The proliferation of syntrophic microorganisms may indicate interactions via direct interspecific electron transfer. The obtained results suggest that the addition of graphene oxide at low mg L-1 concentrations to an anaerobic membrane bioreactor may be considered to improve the removal of antibiotics from municipal wastewater.


Asunto(s)
Reactores Biológicos , Aguas Residuales , Anaerobiosis , Antibacterianos , Preparaciones Farmacéuticas , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Metano
3.
Environ Pollut ; 324: 121343, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36893977

RESUMEN

The effect of graphene oxide on the anaerobic digestion of waste activated sludge was investigated at two graphene oxide concentrations (0.025 and 0.075 g graphene oxide per g volatile solids) using biochemical methane potential tests. The occurrence of 36 pharmaceuticals was monitored in the solid and liquid phases before and after the anaerobic treatment. The addition of graphene oxide improved the removal of most pharmaceuticals detected, even those that are considered persistent to biological degradation, such as azithromycin, carbamazepine, and diclofenac. No significant differences were observed in the final specific methane production without graphene oxide and with the lowest graphene oxide concentration, yet the highest graphene oxide concentration partially inhibited methane production. The relative abundance of antibiotic resistance genes was not affected by the graphene oxide addition. Finally, significant changes in the microbial community including bacteria and archaea were detected with graphene oxide addition.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Anaerobiosis , Reactores Biológicos , Metano/metabolismo , Preparaciones Farmacéuticas
4.
Sci Total Environ ; 849: 157626, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35901871

RESUMEN

The wastewater sector paradigm is shifting from wastewater treatment to resource recovery. In addition, concerns regarding sustainability during the operation have increased. In this sense, many water utilities have become aware of the potential GHG emissions during the operation of wastewater treatment. This study assesses the nitrous oxide and methane emissions during the long-term operation of a novel wastewater resource recovery facility (WRRF) configuration: the mainstream SCEPPHAR. The long-term N2O and CH4 emission factors calculated were in the low range of the literature, 1 % and 0.1 %, respectively, even with high nitrite accumulation in the case of N2O. The dynamics and possible sources of production of these emissions are discussed. Finally, different aeration strategies were implemented to study the impact on the N2O emissions in the nitrifying reactor. Results showed that operating the pilot-plant under different dissolved oxygen concentrations (between 1 and 3 g O2 m-3) did not have an effect on the N2O emission factor. Intermittent aeration was the aeration strategy that most mitigated the N2O emissions in the nitrifying reactor, obtaining a reduction of 40 % compared to the normal operation of the pilot plant.


Asunto(s)
Óxido Nitroso , Aguas Residuales , Metano , Nitritos , Óxido Nitroso/análisis , Oxígeno/análisis , Aguas Residuales/análisis , Agua
5.
Water Res ; 218: 118504, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35525033

RESUMEN

Ammonia recovery from centrate of an anaerobic digester was investigated using an onsite bipolar-electrodialysis (BP-ED) pilot scale plant coupled to two liquid/liquid membrane contactor (LLMC) modules. To investigate the process performance and robustness, the pilot plant was operated at varying current densities, load ratio (current to nitrogen loading), and in continuous and intermittent current (Donnan) mode. A higher load ratio led to higher total ammonium nitrogen (TAN, sum of ammonia and ammonium) removal efficiency, whereas the increase in the applied current did not have a significant impact the TAN removal efficiency. Continuous current application resulted in the higher TAN removal compared with the Donnan dialysis mode. The lowest specific energy consumption of 6.3 kWh kgN-1 was recorded in the Donnan mode, with the load ratio of 1.4, at 200 L h-1 flowrate and current density of 75 A m-2. Lower energy demand observed in the Donnan mode was likely due to the lower scaling and fouling of the ion exchange membranes. Nevertheless, scaling and fouling limited the operation of the BP-ED stack in all operational modes, which had to be interrupted by the daily cleaning procedures. The LLMC module enabled a highly selective recovery of ammonia as ammonium sulfate ((NH4)2SO4), with the concentration of ammonia ranging from 19 to 33 gN L-1. However, the analysis of per- and polyfluoroalkyl substances (PFASs) in the obtained (NH4)2SO4 product revealed the presence of 212-253 ng L-1 of 6:2 fluorotelomer sulfonate (FTS), a common substitute of legacy PFAS. Given the very low concentrations of 6:2 FTS (i.e., < 2 ng L-1) encountered in the concentrated stream, 6:2 FTS was likely released from the Teflon-based components in the sulfuric acid dosage line. Thus, careful selection of the pilot plant tubing, pumps and other components is required to avoid any risks associated with the PFAS presence and ensure safe use of the final product as fertilizer.


Asunto(s)
Compuestos de Amonio , Fluorocarburos , Amoníaco/análisis , Anaerobiosis , Nitrógeno/análisis , Diálisis Renal , Aguas Residuales
6.
Sci Total Environ ; 822: 153477, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35093343

RESUMEN

In the present paper, the mesophilic (35 °C) and thermophilic (55 °C) biomethanization of poultry and cattle manures were investigated using biochemical methane potential (BMP) tests. Specific methane production (SMP), 24 pharmaceutical compounds (PhACs), and five antibiotic resistance genes (ARGs) (blaKPC, ermB, qnrS, sul1 and tetW) together with the microbial community were analyzed. Mesophilic BMP tests resulted in the highest SMP when poultry manure was used (285.5 mL CH4/g VSS with poultry vs 239.6 mL CH4/g VSS with cattle manure) while thermophilic temperatures led to the highest SMP with cattle manure (231.2 mL CH4/g VSS with poultry vs 238.0 mL CH4/g VSS with cattle manure). Higher removals of veterinary pharmaceuticals were detected at 55 °C with both manures indicating that thermophilic digestion is better suited for the removal of these compounds. Tylosin, tilmicosin, chlortetracycline, and sulfamethoxazole presented removals higher than 50%, being the first two completely removed under mesophilic and thermophilic conditions. When comparing the relative abundance of ARGs at the end of each treatment, the most significant removal was found for qnrS which was not detected after the anaerobic treatment. The remaining ARGs did not suffer significant changes. Finally, microbial composition analysis showed that temperature affected the final microbial population more than the microorganisms present in the substrate or inoculum.


Asunto(s)
Estiércol , Drogas Veterinarias , Anaerobiosis , Animales , Antibacterianos/farmacología , Bovinos , Farmacorresistencia Microbiana/genética , Estiércol/análisis , Aves de Corral
7.
Water Res ; 200: 117212, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34029870

RESUMEN

One of the major challenges in existing WasteWater Treatment Plants (WWTPs) is to comply with the increasingly stringent nutrient discharge limits established by the competent authorities to enhance environmental protection, while keeping operation costs as low as possible. This paper describes the results obtained from upgrading a full-scale WWTP during seven years (2013-2020) applying five different Advanced Process Control (APC) strategies. Results show that implementation of APC and the development of ammonia-based aeration control, aeration/non-aeration cycles, improved internal/external recirculation and chemical dosage controls resulted in an improvement in nutrients removal rates (+25.48% and +9.25%, for nitrogen and phosphorus, respectively) and in a reduction (-21.79%) of the specific energy ratio. In addition, the promotion of an Enhanced Biological Phosphorous Removal (EBPR) process by APC resulted in an improvement in biological phosphorous removal (+43.90%), chemical savings (-20.00%) and nutrient recovery in the dewatered sludge. Molecular biology tools and laboratory batch tests confirmed the Polyphosphate Accumulating Organisms (PAOs) activity, specifically Tetrasphaera genera. Finally, an economic analysis was conducted, showing a rate of return for the incurred capital expenses with the implemented APC systems of about five years, being an affordable alternative to the upgrading existing WWTPs.


Asunto(s)
Reactores Biológicos , Purificación del Agua , Nitrógeno , Nutrientes , Fósforo , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
8.
Front Microbiol ; 12: 678057, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054786

RESUMEN

Methane is the final product of the anaerobic decomposition of organic matter. The conversion of organic matter to methane (methanogenesis) as a mechanism for energy conservation is exclusively attributed to the archaeal domain. Methane is oxidized by methanotrophic microorganisms using oxygen or alternative terminal electron acceptors. Aerobic methanotrophic bacteria belong to the phyla Proteobacteria and Verrucomicrobia, while anaerobic methane oxidation is also mediated by more recently discovered anaerobic methanotrophs with representatives in both the bacteria and the archaea domains. The anaerobic oxidation of methane is coupled to the reduction of nitrate, nitrite, iron, manganese, sulfate, and organic electron acceptors (e.g., humic substances) as terminal electron acceptors. This review highlights the relevance of methanotrophy in natural and anthropogenically influenced ecosystems, emphasizing the environmental conditions, distribution, function, co-existence, interactions, and the availability of electron acceptors that likely play a key role in regulating their function. A systematic overview of key aspects of ecology, physiology, metabolism, and genomics is crucial to understand the contribution of methanotrophs in the mitigation of methane efflux to the atmosphere. We give significance to the processes under microaerophilic and anaerobic conditions for both aerobic and anaerobic methane oxidizers. In the context of anthropogenically influenced ecosystems, we emphasize the current and potential future applications of methanotrophs from two different angles, namely methane mitigation in wastewater treatment through the application of anaerobic methanotrophs, and the biotechnological applications of aerobic methanotrophs in resource recovery from methane waste streams. Finally, we identify knowledge gaps that may lead to opportunities to harness further the biotechnological benefits of methanotrophs in methane mitigation and for the production of valuable bioproducts enabling a bio-based and circular economy.

9.
Sci Total Environ ; 712: 136372, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31945524

RESUMEN

The effect of COD addition into an anammox reactor was assessed during short and long term exposure. The short term exposure was assessed via batch tests and lasted 48 h. Results indicated the presence of a very active denitrifying community able to consume COD using nitrate and nitrite as electron acceptors. However, the presence of COD did not result in an increase of the ammonium concentration at the end of the tests indicating that anammox activity was not suppressed by the addition of COD. Different COD concentrations (125, 225 and 175 mg COD/L) were also added in the reactor during 3 periods within its operation (period II, III and V respectively). Long term COD addition (up to 102 d of continuous addition during period II and III) caused a decrease of the anammox activity and a shift on the microbial community, with a decrease on the anammox fraction. However, the anammox process was never lost and it fully recovered as soon as COD addition stopped. Finally, dissolved N2O was monitored under periods with and without COD addition, showing higher concentrations during transient periods from COD addition to no addition. The results of this paper provide evidence of how a long term COD exposure into an anammox reactor affect the overall nitrogen removal process, the granular structure of the anammox biomass, its microbial composition and for the first time, its N2O emissions.


Asunto(s)
Óxido Nitroso/química , Compuestos de Amonio , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitrógeno , Oxidación-Reducción
10.
Membranes (Basel) ; 9(8)2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387333

RESUMEN

Applying forward osmosis directly on raw municipal wastewater is of high interest for the simultaneous production of a high quality permeate for water reuse and pre-concentrating wastewater for anaerobic digestion. This pilot scale study investigates, for the first time, the feasibility of concentrating real raw municipal wastewater using a submerged plate and frame forward osmosis module (0.34 m2) to reach 70% water recovery. Membrane performance, fouling behavior, and effective concentration of wastewater compounds were examined. Two different draw solutions (NaCl and MgCl2), operating either with constant draw concentration or in batch with draw dilution over time, were evaluated. Impact of gas sparging on fouling and external concentration polarization was also assessed. Water fluxes up to 15 L m-2 h-1 were obtained with clean water and 35 g NaCl/L as feed and draw solution, respectively. When using real wastewater, submerged forward osmosis proved to be resilient to clogging, demonstrating its suitability for application on municipal or other complex wastewater; operating with 11.7 g NaCl/L constant draw solution, water and reverse salt fluxes up to 5.1 ± 1.0 L m-2 h-1 and 4.8 ± 2.6 g m-2 h-1 were observed, respectively. Positively, total and soluble chemical oxygen demand concentration factors of 2.47 ± 0.15 and 1.86 ± 0.08, respectively, were achieved, making wastewater more suitable for anaerobic treatment.

11.
Waste Manag ; 95: 526-534, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31351638

RESUMEN

Secondary sludge pre-treatment with free nitrous acid (FNA) has been proven to enhance methane production during anaerobic digestion. However, it is still unclear if the same enhancement can be achieved only using nitrite, without sludge acidification. In this paper, secondary sludge was pre-treated during 5 h with nitrite within the range of 50-250 mg NO2--N/L at neutral pH (6.7). Results obtained from biochemical methane potential tests (BMPs) indicated that sludge pre-treatment at 150 mg NO2--N/L presented the best enhancement of methane production (24% as compared to the control). These conditions were used to pre-treat sludge added in a continuous lab-scale anaerobic digester that operated in parallel to another digester receiving sludge pre-treated with FNA (250 mg NO2--N/L at pH 5.5). Results showed a very similar performance in terms of methane enhancement in both reactors, indicating that sludge acidification is not needed to improve methane yield. A preliminary economic assessment also highlights the need for assessing real chemical costs and national power prices before the implementation of these pre-treatment steps as the associated benefits can significantly change depending on the country where the wastewater treatment plant is located.


Asunto(s)
Ácido Nitroso , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Metano , Nitritos
12.
Sci Total Environ ; 670: 993-1000, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31018441

RESUMEN

A laboratory scale anaerobic membrane bioreactor was operated for 11 months treating synthetic wastewater that mimicked the concentrate from a forward osmosis process treating municipal wastewater with 80% water recovery. The effect of temperature variation on reactor performance was assessed. The reactor operated during 4 months at 34 °C and then temperature was decreased to 23 °C, 17 °C and 15 °C mimicking the typical temperature seasonal variations of the sewage. Average COD removal efficiencies were 95, 87, 76 and 67% at 34, 23, 17 and 15 °C respectively, obtaining lower biogas production and lower COD removal at lower temperatures. Dissolved methane in the permeate averaged 8.2 mg CH4/L and did not significantly change with temperature. After 2 months operating at 15 °C, temperature was progressively increased, resulting in an immediate increase of methane production and COD removal efficiencies. Microbial analysis showed important changes in the archaeal community when temperature was changed from 34 to 23 °C.


Asunto(s)
Biocombustibles/análisis , Reactores Biológicos , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Anaerobiosis , Archaea/fisiología , Membranas Artificiales , Microbiota , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología
13.
Chemosphere ; 217: 659-668, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30447613

RESUMEN

Despite the number of studies that have investigated the fate of endocrine disrupting compounds (EDCs), to date results are still contradictory and more research is required to evaluate the contribution of the microbial communities present in different engineered treatment systems. Thus, autotrophic and heterotrophic types of biomass were here compared in terms of efficiency in the removal of estrone (E1), 17ß-estradiol (E2), estriol (E3), 17α-ethynilestradiol (EE2) and bisphenol A (BPA). Experiments were performed with enriched nitrifying activated sludge (NAS) and enriched ammonia oxidizing bacteria (AOB) sludge cultivated at lab-scale, as well as with conventional activated sludge (CAS) from a full-scale wastewater treatment plant. Both enriched NAS and AOB demonstrated a negligible degrading capacity. In both cases, the studied EDCs exhibited low removals (<14%) and showed no correlation with the increasing nitrification rates contradicting some of the hypothesis present in literature. Contrariwise, the biodegradation capabilities of the heterotrophic fraction of CAS were highlighted. E2 and E3 were removed by up to 100% and 78%, respectively. E1 was found to be the main transformation product of E2 (almost quantitative oxidation) and it was also highly eliminated. Finally, EE2 and BPA were more persistent biologically with removals ranging from 10% to 39%. For these two compounds similar removals were obtained during experiments with heat-inactivated biomass suggesting that sorption could be a relevant route of elimination.


Asunto(s)
Biodegradación Ambiental , Disruptores Endocrinos/aislamiento & purificación , Procesos Heterotróficos , Nitrificación , Biomasa , Disruptores Endocrinos/análisis , Microbiota , Oxidación-Reducción , Aguas del Alcantarillado/microbiología , Aguas Residuales/química
14.
Chemosphere ; 212: 162-169, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30144677

RESUMEN

Temperature has a known effect on ammonia oxidizing bacteria (AOB) activities, reducing its ammonia oxidizing rate (AOR) when temperature is lowered. However, little is known concerning its effect on N2O and NO emissions which are produced during ammonia oxidation having a greenhouse effect. To study this, an AOB enriched partial nitrification sequencing batch reactor (PN-SBR) was operated within a two step-wise feed under 5 different temperatures (30-25-20-15-10 °C). A decrease on the specific AOR (sAOR) was detected when decreasing the temperature. N2O emissions were also affected by the temperature but only the ones produced during the first aeration of the cycle, when AOBs shifted from a period of low activity to a period of high activity. N2O emission factors (%) detected during the second aerobic phase were similar among all temperatures tested and lower than the emissions detected during the first aerated phase. The average N2O emission factor was in the range of 0.15-0.70% N2O-N/NH4+-N oxidized in the first aeration phase and 0.14-0.15% N2O-N/NH4+-N-oxidized in the second aeration phase at 10 to 30 °C, respectively. On the other hand, NO emissions were very similar under all temperatures resulting in 0.03-0.06% of NH4+-N oxidized.


Asunto(s)
Reactores Biológicos/microbiología , Nitrificación , Temperatura , Aguas Residuales/química , Amoníaco/química , Óxido Nitroso/análisis , Oxidación-Reducción
15.
Water Res ; 137: 262-272, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29550729

RESUMEN

Denitrifying enhanced biological phosphorus removal (EBPR) systems can be an efficient means of removing phosphate (P) and nitrate (NO3-) with low carbon source and oxygen requirements. Tetrasphaera is one of the most abundant polyphosphate accumulating organisms present in EBPR systems, but their capacity to achieve denitrifying EBPR has not previously been determined. An enriched Tetrasphaera culture, comprising over 80% of the bacterial biovolume was obtained in this work. Despite the denitrification capacity of Tetrasphaera, this culture achieved only low levels of anoxic P-uptake. Batch tests with different combinations of NO3-, nitrite (NO2-) and nitrous oxide (N2O) revealed lower N2O accumulation by Tetrasphaera as compared to Accumulibacter and Competibacter when multiple electron acceptors were added. Electron competition was observed during the addition of multiple nitrogen electron acceptors species, where P uptake appeared to be slightly favoured over glycogen production in these situations. This study increases our understanding of the role of Tetrasphaera-related organisms in denitrifying EBPR systems.


Asunto(s)
Actinobacteria/metabolismo , Óxido Nitroso/metabolismo , Fósforo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Desnitrificación , Glucógeno/metabolismo , Nitritos/metabolismo , Nitrógeno/metabolismo , Polifosfatos/metabolismo , Eliminación de Residuos Líquidos
16.
Chemosphere ; 201: 25-31, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29518731

RESUMEN

The decreased activity (i.e. decay) of anaerobic ammonium oxidation (Anammox) bacteria during starvation can be attributed to death (i.e. decrease in the amount of viable bacteria) and activity decay (i.e. decrease in the specific activity of viable bacteria). Although they are crucial for the operation of the Anammox process, they have never been comprehensively investigated. This study for the first time experimentally assessed death and activity decay of the Anammox bacteria during 84 days' starvation stress based on ammonium removal rate, Live/Dead staining and fluorescence in-situ hybridization. The anaerobic and aerobic decay rates of Anammox bacteria were determined as 0.015 ±â€¯0.001 d-1 and 0.028 ±â€¯0.001 d-1, respectively, indicating Anammox bacteria would lose their activity more quickly in the aerobic starvation than in the anaerobic starvation. The anaerobic and aerobic death rates of Anammox bacteria were measured at 0.011 ±â€¯0.001 d-1 and 0.025 ±â€¯0.001 d-1, respectively, while their anaerobic and aerobic activity decay rates were determined at 0.004 ±â€¯0.001 d-1 and 0.003 ±â€¯0.001 d-1, respectively. Further analysis revealed that death accounted for 73 ±â€¯4% and 89 ±â€¯5% of the decreased activity of Anammox bacteria during anaerobic and aerobic starvations, and activity decay was only responsible for 27 ±â€¯4% and 11 ±â€¯5% of the decreased Anammox activity, respectively, over the same starvation periods. These deeply shed light on the response of Anammox bacteria to the starvation stress, which would facilitate operation and optimization of the Anammox process.


Asunto(s)
Compuestos de Amonio/metabolismo , Bacterias Anaerobias/metabolismo , Reactores Biológicos/microbiología , Viabilidad Microbiana , Aguas Residuales/química , Purificación del Agua/métodos , Aerobiosis , Anaerobiosis , Hibridación Fluorescente in Situ , Nitrógeno , Oxidación-Reducción
17.
Sci Total Environ ; 624: 722-731, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29272841

RESUMEN

In the past few years, anaerobic ammonium oxidation-based processes have attracted a lot of attention for their implementation at the mainstream line of wastewater treatment plants, due to the possibility of leading to energy autarky if combined with anaerobic digestion. However, little is known about the potential degradation of micropollutants by the microbial groups responsible of these processes and the few results available are inconclusive. This study aimed to assess the degradation capability of biomass withdrawn from a combined nitritation/anaerobic ammonium oxidation (combined N/A) pilot plant towards five pharmaceutically active compounds (ibuprofen, sulfamethoxazole, metoprolol, venlafaxine and carbamazepine). Batch experiments were performed under different conditions by selectively activating or inhibiting different microbial groups: i) regular combined N/A operation, ii) aerobic (optimal for nitrifying bacteria), iii) aerobic with allylthiourea (an inhibitor of ammonia monooxygenase, enzyme of ammonia oxidizing bacteria), iv) anoxic (optimal for anaerobic ammonium oxidizing bacteria), v) aerobic with acetate (optimal for heterotrophic bacteria) and vi) anoxic with acetate (optimal for heterotrophic denitrifying bacteria). Ibuprofen was the most biodegradable compound being significantly degraded (49-100%) under any condition except heterotrophic denitrification. Sulfamethoxazole, exhibited the highest removal (70%) under optimal conditions for nitrifying bacteria but in the rest of the experiments anoxic conditions were found to be slightly more favorable (up to 58%). For metoprolol the highest performance was obtained under anoxic conditions favoring anammox bacteria (62%). Finally, carbamazepine and venlafaxine were hardly removed (≤10% in the majority of cases). Taken together, these results suggest the specificity of different microbial groups that in combination with alternating operational parameters can lead to enhanced removal of some micropollutants.


Asunto(s)
Bacterias Anaerobias/metabolismo , Biodegradación Ambiental , Preparaciones Farmacéuticas/metabolismo , Compuestos de Amonio , Anaerobiosis , Biomasa , Reactores Biológicos , Nitrificación , Nitrógeno , Oxidación-Reducción
18.
Sci Total Environ ; 605-606: 1047-1054, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28709370

RESUMEN

Wastewater transport along sewers favors the colonization of inner pipe surfaces by wastewater-derived microorganisms that grow forming biofilms. These biofilms are composed of rich and diverse microbial communities that are continuously exposed to antibiotic residues and antibiotic resistant bacteria (ARB) from urban wastewater. Sewer biofilms thus appear as an optimal habitat for the dispersal and accumulation of antibiotic resistance genes (ARGs). In this study, the concentration of antibiotics, integron (intI1) and antibiotic resistance genes (qnrS, sul1, sul2, blaTEM, blaKPC, ermB, tetM and tetW), and potential bacterial pathogens were analyzed in wastewater and biofilm samples collected at the inlet and outlet sections of a pressurized sewer pipe. The most abundant ARGs detected in both wastewater and biofilm samples were sul1 and sul2 with roughly 1 resistance gene for each 10 copies of 16s RNA gene. Significant differences in the relative abundance of gene intI1 and genes conferring resistance to fluoroquinolones (qnrS), sulfonamides (sul1 and sul2) and betalactams (blaTEM) were only measured between inlet and outlet biofilm samples. Composition of bacterial communities also showed spatial differences in biofilms and a higher prevalence of Operational Taxonomic Units (OTUs) with high sequence identity (>98%) to well-known human pathogens was observed in biofilms collected at the inlet pipe section. Our study highlights the role of sewer biofilms as source and sink of ARB and ARGs and supports the idea that community composition rather than antibiotic concentration is the main factor driving the diversity of the sewage resistome.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Saneamiento , Aguas Residuales/microbiología , Antibacterianos , Biopelículas , Integrones , España
19.
Bioresour Technol ; 219: 106-113, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27479801

RESUMEN

This study aims at investigating the denitrification kinetics in two separate enriched cultures of denitrifying polyphosphate accumulating organisms (dPAO) and denitrifying glycogen accumulating organisms (dGAO) and compare their N2O accumulation potential under different conditions. Two sequencing batch reactors were inoculated to develop dPAO and dGAO enriched microbial communities separately. Seven batch tests with different combinations of electron acceptors (nitrate, nitrite and/or nitrous oxide) were carried out with the enriched biomass from both reactors. Results indicate that in almost all batch tests, N2O accumulated for both cultures, however dPAOs showed a higher denitrification capacity compared to dGAOs due to their higher nitrogen oxides reduction rates. Additionally, the effect of the simultaneous presence of several electron acceptors in the reduction rates of the different nitrogen oxides was also assessed in dPAOs and dGAOs.


Asunto(s)
Bacterias/metabolismo , Glucógeno/metabolismo , Óxido Nitroso/metabolismo , Polifosfatos/metabolismo , Aguas Residuales/microbiología , Biomasa , Reactores Biológicos , Desnitrificación , Cinética
20.
Water Res ; 99: 171-179, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27155989

RESUMEN

Clark-Type nitrous oxide (N2O) sensors are routinely used to measure dissolved N2O concentrations in wastewater treatment plants (WWTPs), but have never before been applied to assess gas-phase N2O emissions in full-scale WWTPs. In this study, a full-scale N2O gas sensor was tested and validated for online gas measurements, and assessed with respect to its linearity, temperature dependence, signal saturation and drift prior to full-scale application. The sensor was linear at the concentrations tested (0-422.3, 0-50 and 0-10 ppmv N2O) and had a linear response up to 2750 ppmv N2O. An exponential correlation between temperature and sensor signal was described and predicted using a double exponential equation while the drift did not have a significant influence on the signal. The N2O gas sensor was used for online N2O monitoring in a full-scale sequencing batch reactor (SBR) treating domestic wastewater and results were compared with those obtained by a commercial online gas analyser. Emissions were successfully described by the sensor, being even more accurate than the values given by the commercial analyser at N2O concentrations above 500 ppmv. Data from this gas N2O sensor was also used to validate two models to predict N2O emissions from dissolved N2O measurements, one based on oxygen transfer rate and the other based on superficial velocity of the gas bubble. Using the first model, predictions for N2O emissions agreed by 98.7% with the measured by the gas sensor, while 87.0% similarity was obtained with the second model. This is the first study showing a reliable estimation of gas emissions based on dissolved N2O online data in a full-scale wastewater treatment facility.


Asunto(s)
Óxido Nitroso , Aguas Residuales , Reactores Biológicos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...