Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 200: 106828, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38862047

RESUMEN

The potential of micron-sized amorphous mesoporous silica particles as a novel controlled release drug delivery system for pulmonary administration has been investigated. Mesoporous silica formulations were demonstrated to provide a narrower particle size distribution and (spherical) shape uniformity compared to commercial micronized formulations, which is critical for repeatable and targeted aerosol delivery to the lungs. The release profiles of a well-known pulmonary drug loaded into mesoporous particles of different mean particle diameters (2.4, 3.9 and 6.3 µm) were analysed after aerosolization in a modified Andersen Cascade Impactor. Systematic control of the release rate of drug loaded into the particles was demonstrated in simulated lung fluid by variation of the mean particle diameter, as well as an enhanced release compared to a commercial micronized formulation. The mesoporous silica formulations all demonstrated an increased release rate of the loaded drug and moreover, under aerosolization from a commercial, low-cost dry powder inhaler (DPI) device, the formulations showed excellent performance, with low retainment and commercially viable fine particle fractions (FPFs). In addition, the measured median mass aerodynamic diameter (MMAD) of the different formulations (2.8, 4.1 and 6.2 µm) was shown to be tuneable with particle size, which can be helpful for targeting different regions in the lung. Together these results demonstrate that mesoporous silica formulations offer a promising novel alternative to current dry powder formulations for pulmonary drug delivery.

2.
J Phys Chem B ; 128(17): 4231-4242, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38639329

RESUMEN

Three nonhalogenated ionic liquids (ILs) dissolved in 2-ethylhexyl laurate (2-EHL), a biodegradable oil, are investigated in terms of their bulk and electro-interfacial nanoscale structures using small-angle neutron scattering (SANS) and neutron reflectivity (NR). The ILs share the same trihexyl(tetradecyl)phosphonium ([P6,6,6,14]+) cation paired with different anions, bis(mandelato)borate ([BMB]-), bis(oxalato)borate ([BOB]-), and bis(salicylato)borate ([BScB]-). SANS shows a high aspect ratio tubular self-assembly structure characterized by an IL core of alternating cations and anions with a 2-EHL-rich shell or corona in the bulk, the geometry of which depends upon the anion structure and concentration. NR also reveals a solvent-rich interfacial corona layer. Their electro-responsive behavior, pertaining to the structuring and composition of the interfacial layers, is also influenced by the anion identity. [P6,6,6,14][BOB] exhibits distinct electroresponsiveness to applied potentials, suggesting an ion exchange behavior from cation-dominated to anion-rich. Conversely, [P6,6,6,14][BMB] and [P6,6,6,14][BScB] demonstrate minimal electroresponses across all studied potentials, related to their different dissociative and diffusive behavior. A mixed system is dominated by the least soluble IL but exhibits an increase in disorder. This work reveals the subtlety of anion architecture in tuning bulk and electro-interfacial properties, offering valuable molecular insights for deploying nonhalogenated ILs as additives in biodegradable lubricants and supercapacitors.

3.
J Control Release ; 369: 231-250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479444

RESUMEN

Inhalation therapy treating severe infectious disease is among the more complex and emerging topics in controlled drug release. Micron-sized carriers are needed to deposit drugs into the lower airways, while nano-sized carriers are of preference for cell targeting. Here, we present a novel and versatile strategy using micron-sized spherical particles with an excellent aerodynamic profile that dissolve in the lung fluid to ultimately generate nanoparticles enabling to enhance both extra- and intra-cellular drug delivery (i.e., dual micro-nano inhalation strategy). The spherical particles are synthesised through the condensation of nano-sized amorphous silicon dioxide resulting in high surface area, disordered mesoporous silica particles (MSPs) with monodispersed size of 2.43 µm. Clofazimine (CLZ), a drug shown to be effective against multidrug-resistant tuberculosis, was encapsulated in the MSPs obtaining a dry powder formulation with high respirable fraction (F.P.F. <5 µm of 50%) without the need of additional excipients. DSC, XRPD, and Nitrogen adsorption-desorption indicate that the drug was fully amorphous when confined in the nano-sized pores (9-10 nm) of the MSPs (shelf-life of 20 months at 4 °C). Once deposited in the lung, the CLZ-MSPs exhibited a dual action. Firstly, the nanoconfinement within the MSPs enabled a drastic dissolution enhancement of CLZ in simulated lung fluid (i.e., 16-fold higher than the free drug), increasing mycobacterial killing than CLZ alone (p = 0.0262) and reaching concentrations above the minimum bactericidal concentration (MBC) against biofilms of M. tuberculosis (i.e., targeting extracellular bacteria). The released CLZ permeated but was highly retained in a Calu-3 respiratory epithelium model, suggesting a high local drug concentration within the lung tissue minimizing risk for systemic side effects. Secondly, the micron-sized drug carriers spontaneously dissolve in simulated lung fluid into nano-sized drug carriers (shown by Nano-FTIR), delivering high CLZ cargo inside macrophages and drastically decreasing the mycobacterial burden inside macrophages (i.e., targeting intracellular bacteria). Safety studies showed neither measurable toxicity on macrophages nor Calu-3 cells, nor impaired epithelial integrity. The dissolved MSPs also did not show haemolytic effect on human erythrocytes. In a nutshell, this study presents a low-cost, stable and non-invasive dried powder formulation based on a dual micro-nano carrier to efficiently deliver drug to the lungs overcoming technological and practical challenges for global healthcare.


Asunto(s)
Antituberculosos , Clofazimina , Portadores de Fármacos , Pulmón , Nanopartículas , Administración por Inhalación , Porosidad , Antituberculosos/administración & dosificación , Antituberculosos/farmacocinética , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/uso terapéutico , Portadores de Fármacos/química , Nanopartículas/química , Nanopartículas/administración & dosificación , Humanos , Pulmón/metabolismo , Clofazimina/administración & dosificación , Clofazimina/farmacocinética , Clofazimina/uso terapéutico , Dióxido de Silicio/química , Dióxido de Silicio/administración & dosificación , Sistemas de Liberación de Medicamentos , Animales , Liberación de Fármacos , Tamaño de la Partícula , Tuberculosis/tratamiento farmacológico , Mycobacterium tuberculosis/efectos de los fármacos , Ratones
4.
J Colloid Interface Sci ; 652(Pt B): 1240-1249, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657223

RESUMEN

The structure and interaction of ionic liquids (ILs) influence their interfacial composition, and their arrangement (i.e., electric double-layer (EDL) structure), can be controlled by an electric field. Here, we employed a quartz crystal microbalance (QCM) to study the electrical response of two non-halogenated phosphonium orthoborate ILs, dissolved in a polar solvent at the interface. The response is influenced by the applied voltage, the structure of the ions, and the solvent polarizability. One IL showed anomalous electro-responsivity, suggesting a self-assembly bilayer structure of the IL cation at the gold interface, which transitions to a typical EDL structure at higher positive potential. Neutron reflectivity (NR) confirmed this interfacial structuring and compositional changes at the electrified gold surface. A cation-dominated self-assembly structure is observed for negative and neutral voltages, which abruptly transitions to an anion-rich interfacial layer at positive voltages. An interphase transition explains the electro-responsive behaviour of self-assembling IL/carrier systems, pertinent for ILs in advanced tribological and electrochemical contexts.

5.
Sci Rep ; 12(1): 20479, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443307

RESUMEN

The effect of electric potential on the lubrication of a non-halogenated phosphonium orthoborate ionic liquid used as an additive in a biodegradable oil was studied. An in-house tribotronic system was built around an instrument designed to measure lubricant film thickness between a rolling steel ball and a rotating silica-coated glass disc. The application of an electric field between the steel ball and a set of customized counter-electrodes clearly induced changes in the thickness of the lubricant film: a marked decrease at negative potentials and an increase at positive potentials. Complementary neutron reflectivity studies demonstrated the intrinsic electroresponsivity of the adsorbate: this was performed on a gold-coated silicon block and made possible in the same lubricant system by deuterating the oil. The results indicate that the anions, acting as anchors for the adsorbed film on the steel surface, are instrumental in the formation of thick and robust lubricating ionic boundary films. The application of a high positive potential, outside the electrochemical window, resulted in an enormous boost to film thickness, implicating the formation of ionic multi-layers and demonstrating the plausibility of remote control of failing contacts in inaccessible machinery, such as offshore wind and wave power installations.

6.
Nanoscale ; 13(1): 371-379, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33351024

RESUMEN

It is shown that the air-liquid interface can be made to display the same rich curvature phenomena as common lyotropic liquid crystal systems. Through mixing an insoluble, naturally occurring, branched fatty acid, with an unbranched fatty acid of the same length, systematic variation in the packing constraints at the air-water interface could be obtained. The combination of atomic force microscopy and neutron reflectometry is used to demonstrate that the water surface exhibits significant tuneable topography. By systematic variation of the two fatty acid proportions, ordered arrays of monodisperse spherical caps, cylindrical sections, and a mesh phase are all observed, as well as the expected lamellar structure. The tuneable deformability of the air-water interface permits this hitherto unexplored topological diversity, which is analogous to the phase elaboration displayed by amphiphiles in solution. It offers a wealth of novel possibilities for the tailoring of nanostructure.

7.
Phys Chem Chem Phys ; 22(48): 28191-28201, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33295339

RESUMEN

The effect of water on the electroactive structuring of a tribologically relevant ionic liquid (IL) when dispersed in a polar solvent has been investigated at a gold electrode interface using neutron reflectivity (NR). For all solutions studied, the addition of small amounts of water led to clear changes in electroactive structuring of the IL at the electrode interface, which was largely determined by the bulk IL concentration. At a dilute IL concentration, the presence of water gave rise to a swollen interfacial structuring, which exhibited a greater degree of electroresponsivity with applied potential compared to an equivalent dry solution. Conversely, for a concentrated IL solution, the presence of water led to an overall thinning of the interfacial region and a crowding-like structuring, within which the composition of the inner layer IL layers varied systematically with applied potential. Complementary nanotribotronic atomic force microscopy (AFM) measurements performed for the same IL concentration, in dry and ambient conditions, show that the presence of water reduces the lubricity of the IL boundary layers. However, consistent with the observed changes in the IL layers observed by NR, reversible and systematic control of the friction coefficient with applied potential was still achievable. Combined, these measurements provide valuable insight into the implications of water on the interfacial properties of ILs at electrified interfaces, which inevitably will determine their applicability in tribotronic and electrochemical contexts.

8.
Phys Chem Chem Phys ; 22(34): 19162-19171, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32812565

RESUMEN

Neutron reflectivity (NR) measurements have been employed to study the interfacial structuring and composition of electroresponsive boundary layers formed by an ionic liquid (IL) lubricant at an electrified gold interface when dispersed in a polar solvent. The results reveal that both the composition and extent of the IL boundary layers intricately depend on the bulk IL concentration and the applied surface potential. At the lowest concentration (5% w/w), a preferential adsorption of the IL cation at the gold electrode is observed, which hinders the ability to electro-induce changes in the boundary layers. In contrast, at higher IL bulk concentrations (10 and 20% w/w), the NR results reveal a significantly larger concentration of the IL ions at the gold interface that exhibit significantly greater electroresponsivity, with clear changes in the layer composition and layer thickness observed for different potentials. In complementary atomic force microscopy (AFM) measurements on an electrified gold surface, such IL boundary layers are demonstrated to provide excellent friction reduction and electroactive friction (known as tribotronics). In agreement with the NR results obtained, clear concentration effects are also observed. Together such results provide valuable molecular insight into the electroactive structuring of ILs in solvent mixtures, as well as provide mechanistic understanding of their tribotronic behaviours.

9.
Nanoscale Horiz ; 5(5): 839-846, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32364200

RESUMEN

A simple, insoluble monolayer of fatty acid is shown to induce 3D nanotexturing of the air-water interface. This advance has been achieved through the study of monolayers of a methyl-branched long chain fatty acid, analogous to those found on the surface of hair and wool, directly at the air-water interface. Specular neutron reflectometry combined with AFM probing of deposited monolayers shows pronounced 3D surface domains, which are absent for unbranched analogues and are attributed to hydrocarbon packing constraints. The resulting surface topographies of the water far exceed the height perturbation that can be explained by the presence of capillary waves of a free liquid surface. These have hitherto been considered the only source of perturbation of the flatness of a planar water interface under gravity in the absence of topographical features from the presence of extended, globular or particulate matter. This amounts to a paradigm shift in the study of interfacial films and opens the possibility of 3D texturing of the air-water interface.

10.
Phys Chem Chem Phys ; 22(16): 8450-8460, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32271337

RESUMEN

Control of the interfacial structures of ionic liquids (ILs) at charged interfaces is important to many of their applications, including in energy storage solutions, sensors and advanced lubrication technologies utilising electric fields. In the case of the latter, there is an increasing demand for the study of non-halogenated ILs, as many fluorinated anions have been found to produce corrosive and toxic halides under tribological conditions. Here, the interfacial structuring of a series of four imidazolium ILs ([CnC1Im]) of varying alkyl chain lengths (n = 5, 6, 7, 10), with a non-halogenated borate-based anion ([BOB]), have been studied at charged interfaces using sum frequency generation (SFG) spectroscopy and neutron reflectivity (NR). For all alkyl chain lengths, the SFG spectra show that the cation imidazolium ring responds to the surface charge by modifying its orientation with respect to the surface normal. In addition, the combination of SFG spectra with electrochemical NR measurements reveals that the longest alkyl chain length (n = 10) forms a bilayer structure at all charged interfaces, independent of the ring orientation. These results demonstrate the tunability of IL interfacial layers through the use of surface charge, as well as effect of the cation alkyl chain length, and provide valuable insight into the charge compensation mechanisms of ILs.

11.
J Chem Phys ; 148(19): 193806, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-30307199

RESUMEN

Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.

12.
Rev Sci Instrum ; 89(4): 043902, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29716371

RESUMEN

We present the multifunctional force microscope (MFM), a normal and lateral force-measuring instrument with in situ imaging. In the MFM, forces are calculated from the normal and lateral deflection of a cantilever as measured via fiber optic sensors. The motion of the cantilever is controlled normally by a linear micro-translation stage and a piezoelectric actuator, while the lateral motion of the sample is controlled by another linear micro-translation stage. The micro-translation stages allow for travel distances that span 25 mm with a minimum step size of 50 nm, while the piezo has a minimum step size of 0.2 nm, but a 100 µm maximum range. Custom-designed cantilevers allow for the forces to be measured over 4 orders of magnitude (from 50 µN to 1 N). We perform probe tack, friction, and hydrodynamic drainage experiments to demonstrate the sensitivity, versatility, and measurable force range of the instrument.

13.
Langmuir ; 32(10): 2360-8, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26901492

RESUMEN

Despite its importance in many applications and processes, a complete and unified view on how nano- and microscale asperities influence hydrodynamic interactions has yet to be reached. In particular, the effects of surface structure can be expected to become more dominant when the length scale of the asperities or textures becomes comparable to that of the fluid flow. Here we analyze the hydrodynamic drainage of a viscous silicone oil squeezed between a smooth plane and a surface decorated with hexagonal arrays of lyophilic microsized cylindrical posts. For all micropost arrays studied, the periodicity of the structures was much larger than the separation range of our measurements. In this thin channel geometry, we find the hydrodynamic drainage and separation forces for the micropost arrays cannot be fully described by existing boundary condition models for interfacial slip or a no-slip shifted plane. Instead, our results show that the influence of the microposts on the hydrodynamic drag exhibits three distinct regimes as a function of separation. For large separations, a no slip boundary condition (Reynolds theory) is observed for all surfaces until a critical (intermediate) separation, below which the position of the no-slip plane scales with surface separation until reaching a maximum, just before contact. Below this separation, a sharp decrease in the no-slip plane position then suggests that a boundary condition of a smooth surface is recovered at contact.

14.
Langmuir ; 31(11): 3333-42, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25723405

RESUMEN

Understanding dendrimer structures and their interactions in concentrated solutions is important to a wide range of applications, such as drug delivery and lubrication. However, controversy has persisted concerning whether, when confined to proximity, dendrimers would entangle as observed for polymer systems, or act as deformable spheres. Furthermore, how such behavior may be related to their size-dependent molecular architecture remains unclear. Using small-angle X-ray scattering (SAXS), the intermolecular interactions and structures in aqueous nanofluids containing three generations of carboxyl-terminated poly(amidoamine) (PAMAM) dendrimers (G0.5, Rg = 9.3 Å; G3.5, Rg = 22.6 Å; G5.5, Rg = 39.9 Å, where Rg is the radius of gyration) over a mass fraction range 0.005 ≤ x ≤ 0.316 have been studied. In the highly concentrated regime (x ≥ 0.157), we observe that the solution properties depend on the dendrimer generation. Our results suggest that the smaller G0.5 dendrimers form a highly entangled polymer melt, while the larger dendrimers, G3.5 and G5.5, form densely packed and ordered structures, in which the individual dendrimers exhibit some degree of mutual overlap or deformation. Our results demonstrate the tunability of interdendrimer interactions via their molecular architecture, which in turn may be harnessed to control and tailor the physical properties of dendrimer nanofluids.

15.
ACS Nano ; 7(12): 10850-62, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24219790

RESUMEN

Understanding the frictional properties of nanostructured surfaces is important because of their increasing application in modern miniaturized devices. In this work, lateral force microscopy was used to study the frictional properties between an AFM nanotip and surfaces bearing well-defined nanodomes comprising densely packed prolate spheroids, of diameters ranging from tens to hundreds of nanometers. Our results show that the average lateral force varied linearly with applied load, as described by Amontons' first law of friction, although no direct correlation between the sample topographic properties and their measured friction coefficients was identified. Furthermore, all the nanodomed textures exhibited pronounced oscillations in the shear traces, similar to the classic stick-slip behavior, under all the shear velocities and load regimes studied. That is, the nanotextured topography led to sustained frictional instabilities, effectively with no contact frictional sliding. The amplitude of the stick-slip oscillations, σf, was found to correlate with the topographic properties of the surfaces and scale linearly with the applied load. In line with the friction coefficient, we define the slope of this linear plot as the stick-slip amplitude coefficient (SSAC). We suggest that such stick-slip behaviors are characteristics of surfaces with nanotextures and that such local frictional instabilities have important implications to surface damage and wear. We thus propose that the shear characteristics of the nanodomed surfaces cannot be fully described by the framework of Amontons' laws of friction and that additional parameters (e.g., σf and SSAC) are required, when their friction, lubrication, and wear properties are important considerations in related nanodevices.

16.
Adv Colloid Interface Sci ; 179-182: 68-84, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22795777

RESUMEN

Fluids containing nanostructures, known as nanofluids, are increasingly found in a wide array of applications due to their unique physical properties as compared with their base fluids and larger colloidal suspensions. With several tuneable parameters such as the size, shape and surface chemistry of nanostructures, as well as numerous base fluids available, nanofluids also offer a new paradigm for mediating surface forces. Other properties such as local surface plasmon resonance and size dependent magnetism of nanostructures also present novel mechanisms for imparting tuneable surface interactions. However, our fundamental understanding, experimentally and theoretically, of how these parameters might affect surface forces remains incomplete. Here we review recent results on equilibrium and dynamic surface forces between macroscopic surfaces in nanofluids, highlighting the overriding trends in the correlation between the physical parameters that characterise nanofluids and the surface forces they mediate. We also discuss the challenges that confront existing surface force knowledge as a result of this new paradigm.

17.
Phys Chem Chem Phys ; 13(20): 9318-26, 2011 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-21479298

RESUMEN

With nanotextured surfaces and interfaces increasingly being encountered in technological and biomedical applications, there is a need for a better understanding of frictional properties involving such surfaces. Here we report friction measurements of several nanostructured surfaces using an Atomic Force Microscope (AFM). These nanostructured surfaces provide well defined model systems on which we have tested the applicability of Amontons' laws of friction. Our results show that Amontonian behaviour is observed with each of the surfaces studied. However, no correlation has been found between measured friction and various surface roughness parameters such as average surface roughness (R(a)) and root mean squared (rms) roughness. Instead, we propose that the friction coefficient may be decomposed into two contributions, i.e., µ = µ(0) + µ(g), with the intrinsic friction coefficient µ(0) accounting for the chemical nature of the surfaces and the geometric friction coefficient µ(g) for the presence of nanotextures. We have found a possible correlation between µ(g) and the average local slope of the surface nanotextures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...