Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Ticks Tick Borne Dis ; 11(2): 101333, 2020 03.
Article En | MEDLINE | ID: mdl-31787560

Kemerovo virus (KEMV) is a member of the Great Island virus genetic group, belonging to the tick-borne arboviruses of the genus Orbivirus within the family Reoviridae. Nine strains of KEMV, which were isolated from various locations in Russia, were sequenced by high-throughput sequencing to study their intraspecific diversity and the interspecific relationships of viruses within the Great Island genetic group. For the first time, multiple reassortment within KEMV was reliably demonstrated. Different types of independently emerged alternative reading frames in segment 9 and heterogeneity of the viral population in one of the KEMV strains were found. The hypothesis of the role of an alternative open reading frame (ORF) in segment 9 in KEMV cellular tropism was not confirmed in this study.


Genetic Variation , Genome, Viral , Orbivirus/genetics , Phylogeny , Russia , Sequence Analysis, DNA
2.
Ticks Tick Borne Dis ; 10(2): 269-279, 2019 02.
Article En | MEDLINE | ID: mdl-30448254

Paramushir virus belongs to Sakhalin virus genogroup within Orthonairovirus genus and is one of the poorly studied viruses with unknown pathogenicity. At the moment, only one nearly complete sequence of Paramushir virus genome, isolated in 1972, is available. Two new strains of PARV were isolated in 2015 from a sample collected at the Tyuleniy Island in the Okhotsk Sea and sequenced using a combination of high throughput sequencing and specific multiplex PCR. Both strains are closely related to the early sequenced PARV strain LEIV-1149 K. The signs of intersegment reassortment and probable recombination were revealed, which point to a high variability potential of Paramushir virus and may lead to the formation of strains with novel properties, different from those of the predecessors. The new data regarding Paramushir virus can promote a better understanding of the diversity and relations within Orthonairovirus genus and help define intragenic demarcation criteria, which have not yet been established.


Nairovirus/genetics , Phylogeny , Ticks/virology , Animals , Genome, Viral , High-Throughput Nucleotide Sequencing , Islands , Multiplex Polymerase Chain Reaction , Nairovirus/isolation & purification , RNA, Viral/isolation & purification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Recombination, Genetic , Russia
3.
Adv Virol ; 2018: 3248285, 2018.
Article En | MEDLINE | ID: mdl-30158979

Advances in the next generation sequencing (NGS) technologies have significantly increased our ability to detect new viral pathogens and systematically determine the spectrum of viruses prevalent in various biological samples. In addition, this approach has also helped in establishing the associations of viromes with many diseases. However, unlike the metagenomic studies using 16S rRNA for the detection of bacteria, it is impossible to create universal oligonucleotides to target all known and novel viruses, owing to their genomic diversity and variability. On the other hand, sequencing the entire genome is still expensive and has relatively low sensitivity for such applications. The existing approaches for the design of oligonucleotides for targeted enrichment are usually involved in the development of primers for the PCR-based detection of particular viral species or genera, but not for families or higher taxonomic orders. In this study, we have developed a computational pipeline for designing the oligonucleotides capable of covering a significant number of known viruses within various taxonomic orders, as well as their novel variants. We have subsequently designed a genus-specific oligonucleotide panel for targeted enrichment of viral nucleic acids in biological material and demonstrated the possibility of its application for virus detection in bird samples. We have tested our panel using a number of collected samples and have observed superior efficiency in the detection and identification of viral pathogens. Since a reliable, bioinformatics-based analytical method for the rapid identification of the sequences was crucial, an NGS-based data analysis module was developed in this study, and its functionality in the detection of novel viruses and analysis of virome diversity was demonstrated.

4.
Genome Announc ; 4(5)2016 Oct 27.
Article En | MEDLINE | ID: mdl-27789645

Human adenovirus 7 (hAdv7) 19BOVLB/Volgograd/Rus/2014 was isolated from the autopsy material from an adult with fatal pneumonia in Volgograd, Russia, in March 2014. Whole-genome sequencing of the virus isolate was performed.

...