Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 683, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445161

RESUMEN

The inability of membranes to handle a wide spectrum of pollutants is an important unsolved problem for water treatment. Here we demonstrate water desalination via a membrane distillation process using a graphene membrane where water permeation is enabled by nanochannels of multilayer, mismatched, partially overlapping graphene grains. Graphene films derived from renewable oil exhibit significantly superior retention of water vapour flux and salt rejection rates, and a superior antifouling capability under a mixture of saline water containing contaminants such as oils and surfactants, compared to commercial distillation membranes. Moreover, real-world applicability of our membrane is demonstrated by processing sea water from Sydney Harbour over 72 h with macroscale membrane size of 4 cm2, processing ~0.5 L per day. Numerical simulations show that the channels between the mismatched grains serve as an effective water permeation route. Our research will pave the way for large-scale graphene-based antifouling membranes for diverse water treatment applications.

2.
Nat Commun ; 8: 14217, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134336

RESUMEN

Thermal chemical vapour deposition techniques for graphene fabrication, while promising, are thus far limited by resource-consuming and energy-intensive principles. In particular, purified gases and extensive vacuum processing are necessary for creating a highly controlled environment, isolated from ambient air, to enable the growth of graphene films. Here we exploit the ambient-air environment to enable the growth of graphene films, without the need for compressed gases. A renewable natural precursor, soybean oil, is transformed into continuous graphene films, composed of single-to-few layers, in a single step. The enabling parameters for controlled synthesis and tailored properties of the graphene film are discussed, and a mechanism for the ambient-air growth is proposed. Furthermore, the functionality of the graphene is demonstrated through direct utilization as an electrode to realize an effective electrochemical genosensor. Our method is applicable to other types of renewable precursors and may open a new avenue for low-cost synthesis of graphene films.


Asunto(s)
Técnicas Biosensibles/instrumentación , Grafito/síntesis química , Tecnología Química Verde/métodos , Nanotecnología/métodos , Aire , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electrodos , Gases/química , Ensayo de Materiales , Nanoestructuras/química , Aceite de Soja/química , Propiedades de Superficie
3.
Biosens Bioelectron ; 89(Pt 1): 437-443, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27140815

RESUMEN

Here, we present a rapid, low-temperature (200°C) plasma-enabled synthesis of graphene micro-islands (GMs). Morphological analyses of GMs by scanning electron microscopy (SEM) and atomic force microscopy (AFM) feature a uniform and open-networked array of aggregated graphene sheets. Structural and surface chemical characterizations by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) support the presence of thin graphitic edges and reactive oxygen functional groups. We demonstrate that these inherent properties of GMs enable its multifunctional capabilities as a bioactive interface. GMs exhibit a biocompatibility of 80% cell viability with primary fibroblast lung cells after 5 days. Further, GMs were assembled into an impedimetric genosensor, and its performance was characterized by electrochemical impedance spectroscopy (EIS). A dynamic sensing range of 1pM to 1nM is reported, and a limit of quantification (LOQ) of 2.03×10-13M is deduced, with selectivity to single-RNA-base mismatched sequences. The versatile nature of GMs may be explored to enable multi-faceted bioactive platforms for next-generation personalized healthcare technologies.


Asunto(s)
Materiales Biocompatibles/química , Técnicas Biosensibles/métodos , Grafito/química , MicroARNs/análisis , Nanoestructuras/química , Gases em Plasma/química , Línea Celular , Supervivencia Celular , Frío , Espectroscopía Dieléctrica/métodos , Fibroblastos/citología , Humanos , Nanoestructuras/ultraestructura
4.
ChemSusChem ; 9(9): 1020-6, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27059434

RESUMEN

Manganese oxides are promising pseudocapacitve materials for achieving both high power and energy densities in pseudocapacitors. However, it remains a great challenge to develop MnO2 -based high-performance electrodes due to their low electrical conductance and poor stability. Here we show that MnO2 nanowires anchored on electrochemically modified graphite foil (EMGF) have a high areal capacitance of 167 mF cm(-2) at a discharge current density of 0.2 mA cm(-2) and a high capacitance retention after 5000 charge/discharge cycles (115 %), which are among the best values reported for any MnO2 -based hybrid structures. The EMGF support can also be recycled and the newly deposited MnO2 -based hybrids retain similarly high performance. These results demonstrate the successful preparation of pseudocapacitors with high capacity and cycling stability, which may open a new opportunity towards a sustainable and environmentally friendly method of utilizing electrochemical energy storage devices.


Asunto(s)
Capacidad Eléctrica , Compuestos de Manganeso/química , Nanocables/química , Óxidos/química , Electroquímica , Electrodos , Microscopía Electrónica de Transmisión , Nanocables/ultraestructura , Reciclaje
5.
Materials (Basel) ; 7(7): 4896-4929, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-28788112

RESUMEN

Carbon nanostructures (CNs) are amongst the most promising biorecognition nanomaterials due to their unprecedented optical, electrical and structural properties. As such, CNs may be harnessed to tackle the detrimental public health and socio-economic adversities associated with neurodegenerative diseases (NDs). In particular, CNs may be tailored for a specific determination of biomarkers indicative of NDs. However, the realization of such a biosensor represents a significant technological challenge in the uniform fabrication of CNs with outstanding qualities in order to facilitate a highly-sensitive detection of biomarkers suspended in complex biological environments. Notably, the versatility of plasma-based techniques for the synthesis and surface modification of CNs may be embraced to optimize the biorecognition performance and capabilities. This review surveys the recent advances in CN-based biosensors, and highlights the benefits of plasma-processing techniques to enable, enhance, and tailor the performance and optimize the fabrication of CNs, towards the construction of biosensors with unparalleled performance for the early diagnosis of NDs, via a plethora of energy-efficient, environmentally-benign, and inexpensive approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA