Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 31(9): 1113-1126, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39060422

RESUMEN

There is an unmet clinical need for pharmacologic treatment for metabolic dysfunction-associated steatotic liver disease (MASLD). Hepatocyte cell death is a hallmark of this highly prevalent chronic liver disease, but the dominant type of cell death remains uncertain. Here we report that ferroptosis, an iron-catalyzed mode of regulated cell death, contributes to MASLD. Unsupervised clustering in a cohort of biopsy-proven MASLD patients revealed a subgroup with hepatic ferroptosis signature and lower glutathione peroxidase 4 (GPX4) levels. Likewise, a subgroup with reduced ferroptosis defenses was discerned in public transcriptomics datasets. Four weeks of choline-deficient L-amino acid-defined high-fat diet (CDAHFD) induced MASLD with ferroptosis in mice. Gpx4 overexpression did not affect steatohepatitis, instead CDAHFD protected from morbidity due to hepatocyte-specific Gpx4 knockout. The ferroptosis inhibitor UAMC-3203 attenuated steatosis and alanine aminotransferase in CDAHFD and a second model, i.e., the high-fat high-fructose diet (HFHFD). The effect of monounsaturated and saturated fatty acids supplementation on ferroptosis susceptibility was assessed in human HepG2 cells. Fat-laden HepG2 showed a drop in ferroptosis defenses, increased phosphatidylglycerol with two polyunsaturated fatty acid (PUFA) lipid tails, and sustained ferroptosis sensitivity. In conclusion, this study identified hepatic ferroptosis as a detrimental factor in MASLD patients. Unexpectedly, non-PUFA supplementation to hepatocytes altered lipid bilayer composition to maintain ferroptosis sensitivity. Based on findings in in vivo models, ferroptosis inhibition represents a promising therapeutic target in MASLD.


Asunto(s)
Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ferroptosis/efectos de los fármacos , Animales , Humanos , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Masculino , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Hígado Graso/patología , Ratones Endogámicos C57BL , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Ratones Noqueados
2.
Soft Matter ; 20(26): 5071-5085, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38887036

RESUMEN

In the last decade, research has focused on examining the fundamental interactions occurring in triglycerides, aiming to comprehend the self-assembly of crystalline nanoplatelets (CNPs) and their role in forming larger hierarchical structures essential for fat functionality. Microscopy research on CNPs frequently requires disruptive preparatory techniques, such as deoiling and sonication, to achieve quantitative outcomes. Conversely, X-ray scattering has proven to be an advantageous method for studying triglycerides, as little sample is needed to quantify the system's hierarchical structures. Specifically, ultra-small-angle X-ray scattering (USAXS) has emerged as a fitting technique for studying CNPs, owing to its length scale range falling between 25 nm and 3.49 µm. In this study, we characterized four different 30% fat dilutions of stearic acid-based fats in triolein, with various purities and preparation protocols. Samples were characterized by combining diverse microscopy techniques (cryo-SEM, TEM, polarized light and phase contrast microscopy) with synchrotron-radiation X-ray scattering (WAXS, SAXS, and USAXS). A shape-dependent model for the interpretation of USAXS data is proposed, overcoming some of the drawbacks linked to previously utilized models. CNPs are modeled as polydisperse parallelepipeds, and the aggregates are characterized by fractal dimensionality. This model offers novel insights into CNP cross-section, as well as aggregation. In the long run, we hope that the model will increase our understanding of CNP conformation and interactions, helping us design new fat systems on the mesoscale.

3.
PLoS One ; 19(6): e0305912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935642

RESUMEN

Diet-induced obesity reduces oocyte quality mainly by impacting oocyte mitochondrial functions. Moreover, maternal obesity is associated with mitochondrial dysfunction in oocytes of their adult offspring. However, these effects were reported only in fully grown oocytes, mainly in the form of abnormal mitochondrial ultrastructure. It is unknown if obesogenic (OB) diets or maternal obesity already impact the primordial and preantral follicles. Considering the long duration and dynamics of folliculogenesis, determining the stage at which oocytes are affected and the extent of the damage is crucial for optimal reproductive management of obese patients and their daughters. Potential interaction between maternal and offspring diet effects are also not described, yet pivotal in our contemporary society. Therefore, here we examined the impact of OB diets on oocyte mitochondrial ultrastructure in primordial and activated preantral follicles in offspring from diet-induced obese or lean mothers. We used an outbred Swiss mouse model to increase the pathophysiological relevance to humans. Female mice were fed control or OB diets for 7 weeks, then mated with control males. Their female offspring were fed control or OB diets after weaning for 7 weeks (2-by-2 factorial design). Adult offspring ovarian sections were examined using transmission electron microscopy. We characterised and classified unique features of oocyte mitochondrial ultrastructure in the preantral follicles. An increase in mitochondrial matrix density was the most predominant change during follicle activation in secondary follicles, a feature that is linked with a higher mitochondrial activity. Maternal obesity increased mitochondrial density already in the primordial follicles suggesting an earlier increase in bioenergetic capacity. Maternal obesity did not induce abberant ultrastructure (abnormalities and defects) in primordial or preantral follicles. In contrast, offspring OB diet increased mitochondrial abnormalities in the primordial follicles. Further investigation of the consequences of these changes on oocyte metabolic regulation and stress levels during folliculogenesis is needed.


Asunto(s)
Mitocondrias , Oocitos , Folículo Ovárico , Animales , Oocitos/ultraestructura , Oocitos/metabolismo , Femenino , Folículo Ovárico/metabolismo , Folículo Ovárico/ultraestructura , Folículo Ovárico/patología , Ratones , Mitocondrias/ultraestructura , Mitocondrias/metabolismo , Embarazo , Obesidad/etiología , Obesidad/patología , Obesidad/metabolismo , Masculino , Obesidad Materna/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Dieta Alta en Grasa/efectos adversos
4.
J Biomed Sci ; 31(1): 37, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627751

RESUMEN

BACKGROUND: Huntington's disease (HD) is marked by a CAG-repeat expansion in the huntingtin gene that causes neuronal dysfunction and loss, affecting mainly the striatum and the cortex. Alterations in the neurovascular coupling system have been shown to lead to dysregulated energy supply to brain regions in several neurological diseases, including HD, which could potentially trigger the process of neurodegeneration. In particular, it has been observed in cross-sectional human HD studies that vascular alterations are associated to impaired cerebral blood flow (CBF). To assess whether whole-brain changes in CBF are present and follow a pattern of progression, we investigated both resting-state brain perfusion and vascular reactivity longitudinally in the zQ175DN mouse model of HD. METHODS: Using pseudo-continuous arterial spin labelling (pCASL) MRI in the zQ175DN model of HD and age-matched wild-type (WT) mice, we assessed whole-brain, resting-state perfusion at 3, 6 and 9 and 13 months of age, and assessed hypercapnia-induced cerebrovascular reactivity (CVR), at 4.5, 6, 9 and 15 months of age. RESULTS: We found increased perfusion in cortical regions of zQ175DN HET mice at 3 months of age, and a reduction of this anomaly at 6 and 9 months, ages at which behavioural deficits have been reported. On the other hand, under hypercapnia, CBF was reduced in zQ175DN HET mice as compared to the WT: for multiple brain regions at 6 months of age, for only somatosensory and retrosplenial cortices at 9 months of age, and brain-wide by 15 months. CVR impairments in cortical regions, the thalamus and globus pallidus were observed in zQ175DN HET mice at 9 months, with whole brain reactivity diminished at 15 months of age. Interestingly, blood vessel density was increased in the motor cortex at 3 months, while average vessel length was reduced in the lateral portion of the caudate putamen at 6 months of age. CONCLUSION: Our findings reveal early cortical resting-state hyperperfusion and impaired CVR at ages that present motor anomalies in this HD model, suggesting that further characterization of brain perfusion alterations in animal models is warranted as a potential therapeutic target in HD.


Asunto(s)
Enfermedad de Huntington , Humanos , Ratones , Animales , Lactante , Enfermedad de Huntington/genética , Estudios Transversales , Hipercapnia , Encéfalo , Modelos Animales de Enfermedad , Perfusión
5.
J Med Chem ; 67(9): 7068-7087, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38656144

RESUMEN

Fibroblast activation protein (FAP) is a very reliable biomarker for tissue remodeling. FAP has so far mainly been studied in oncology, but there is growing interest in the enzyme in other diseases like fibrosis. Recently, FAP-targeting diagnostics and therapeutics have emerged, of which the so-called FAPIs are among the most promising representatives. FAPIs typically have a relatively high molecular weight and contain very polar, multicharged chelator moieties. While this is not limiting the application of FAPIs in oncology, more druglike FAPIs could be required to optimally study diseases characterized by denser, less permeable tissue. In response, we designed the first druglike 18F-labeled FAPIs. We report target potencies, biodistribution, and pharmacokinetics and demonstrate FAP-dependent uptake in murine tumor xenografts. Finally, this paper puts forward compound 10 as a highly promising, druglike FAPI for 18F-PET imaging. This molecule is fit for additional studies in fibrosis and its preclinical profile warrants clinical investigation.


Asunto(s)
Endopeptidasas , Radioisótopos de Flúor , Gelatinasas , Proteínas de la Membrana , Tomografía de Emisión de Positrones , Serina Endopeptidasas , Animales , Tomografía de Emisión de Positrones/métodos , Endopeptidasas/metabolismo , Radioisótopos de Flúor/química , Gelatinasas/metabolismo , Gelatinasas/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Humanos , Ratones , Distribución Tisular , Serina Endopeptidasas/metabolismo , Radiofármacos/química , Radiofármacos/farmacocinética , Radiofármacos/síntesis química , Radiofármacos/farmacología , Línea Celular Tumoral , Femenino
6.
Eur J Med Chem ; 270: 116389, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593588

RESUMEN

Dipeptidyl peptidases (DPP) 8 and 9 are intracellular serine proteases that play key roles in various biological processes and recent findings highlight DPP8 and DPP9 as potential therapeutic targets for hematological and inflammasome-related diseases. Despite the substantial progress, the precise biological functions of these proteases remain elusive, and the lack of selective chemical tools hampers ongoing research. In this paper, we describe the synthesis and biochemical evaluation of the first active site-directed DPP8/9 probes which are derived from DPP8/9 inhibitors developed in-house. Specifically, we synthesized fluorescent inhibitors containing nitrobenzoxadiazole (NBD), dansyl (DNS) and cyanine-3 (Cy3) reporters to visualize intracellular DPP8/9. We demonstrate that the fluorescent inhibitors have high affinity and selectivity towards DPP8/9 over related S9 family members. The NBD-labeled DPP8/9 inhibitors were nominated as the best in class compounds to visualize DPP8/9 in human cells. Furthermore, a method has been developed for selective labeling and visualization of active DPP8/9 in vitro by fluorescence microscopy. A collection of potent and selective biotinylated DPP8/9-targeting probes was also prepared by replacing the fluorescent reporter with a biotin group. The present work provides the first DPP8/9-targeting fluorescent compounds as useful chemical tools for the study of DPP8 and DPP9's biological functions.


Asunto(s)
Dipeptidasas , Dipeptidil Peptidasa 4 , Humanos , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Dominio Catalítico , Serina Endopeptidasas , Serina Proteasas , Dipeptidasas/metabolismo
7.
J Assist Reprod Genet ; 41(2): 371-383, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38146030

RESUMEN

PURPOSE: Oxidative stress and mitochondrial dysfunction play central roles in reduced oocyte quality and infertility in obese patients. Mitochondria-targeted treatments containing co-enzyme Q10 such as mitoquinone (MitoQ) can increase mitochondrial antioxidative capacity; however, their safety and efficiency when supplemented to oocytes under lipotoxic conditions have not been described. METHODS: We tested the effect of different concentrations of MitoQ or its cationic carrier (TPP) (0, 0.1, 0.5, 1.0 µM each) during bovine oocyte IVM. Then, we tested the protective capacity of MitoQ (0.1 µM) against palmitic acid (PA)-induced lipotoxicity and mitochondrial dysfunction in oocytes. RESULTS: Exposure to MitoQ, or TPP only, at 1 µM significantly (P<0.05) reduced oocyte mitochondrial inner membrane potential (JC-1 staining) and resulted in reduced cleavage and blastocyst rates compared with solvent control. Lower concentrations of MitoQ or TPP had no effects on embryo development under control (PA-free) conditions. As expected, PA increased the levels of MMP and ROS in oocytes (CellROX staining) and reduced cleavage and blastocyst rates compared with the controls (P<0.05). These negative effects were ameliorated by 0.1 µM MitoQ. In contrast, 0.1 µM TPP alone had no protective effects. MitoQ also normalized the expression of HSP10 and TFAM, and partially normalized HSP60 in the produced blastocysts, indicating at least a partial alleviation of PA-induced mitochondrial stress. CONCLUSION: Oocyte exposure to MitoQ may disturb mitochondrial bioenergetic functions and developmental capacity due to a TPP-induced cationic overload. A fine-tuned concentration of MitoQ can protect against lipotoxicity-induced mitochondrial stress during IVM and restore developmental competence and embryo quality.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Enfermedades Mitocondriales , Compuestos Organofosforados , Ubiquinona/análogos & derivados , Humanos , Animales , Bovinos , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos , Blastocisto/metabolismo , Desarrollo Embrionario , Mitocondrias/metabolismo
8.
Fluids Barriers CNS ; 20(1): 95, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114994

RESUMEN

Autoreactive T lymphocytes crossing the blood-brain barrier (BBB) into the central nervous system (CNS) play a crucial role in the initiation of demyelination and neurodegeneration in multiple sclerosis (MS). Recently, extracellular vesicles (EV) secreted by BBB endothelial cells (BBB-EC) have emerged as a unique form of cell-to-cell communication that contributes to cerebrovascular dysfunction. However, the precise impact of different size-based subpopulations of BBB-EC-derived EV (BBB-EV) on the early stages of MS remains unclear. Therefore, our objective was to investigate the content and function of distinct BBB-EV subpopulations in regulating BBB integrity and their role in T cell transendothelial migration, both in vitro and in vivo. Our study reveals that BBB-ECs release two distinct size based EV populations, namely small EV (sEV; 30-150 nm) and large EV (lEV; 150-300 nm), with a significantly higher secretion of sEV during inflammation. Notably, the expression patterns of cytokines and adhesion markers differ significantly between these BBB-EV subsets, indicating specific functional differences in the regulation of T cell migration. Through in vitro experiments, we demonstrate that lEV, which predominantly reflect their cellular source, play a major role in BBB integrity loss and the enhanced migration of pro-inflammatory Th1 and Th17.1 cells. Conversely, sEV appear to protect BBB function by inducing an anti-inflammatory phenotype in BBB-EC. These findings align with our in vivo data, where the administration of sEV to mice with experimental autoimmune encephalomyelitis (EAE) results in lower disease severity compared to the administration of lEV, which exacerbates disease symptoms. In conclusion, our study highlights the distinct and opposing effects of BBB-EV subpopulations on the BBB, both in vitro and in vivo. These findings underscore the need for further investigation into the diagnostic and therapeutic potential of BBB-EV in the context of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Vesículas Extracelulares , Esclerosis Múltiple , Ratones , Animales , Células Endoteliales/metabolismo , Sistema Nervioso Central/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Barrera Hematoencefálica/metabolismo , Vesículas Extracelulares/metabolismo
9.
Life (Basel) ; 13(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895469

RESUMEN

BACKGROUND: The Tau58/2 and Tau58/4 mouse lines expressing 0N4R tau with a P301S mutation mimic aspects of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). In a side-by-side comparison, we report the age-dependent development of cognitive, motor, and behavioral deficits in comparison with the spatial-temporal evolution of cellular tau pathology in both models. METHODS: We applied the SHIRPA primary screen and specific neuromotor, behavioral, and cognitive paradigms. The spatiotemporal development of tau pathology was investigated immunohistochemically. Levels of sarkosyl-insoluble paired helical filaments were determined via a MesoScale Discovery biomarker assay. RESULTS: Neuromotor impairments developed from age 3 months in both models. On electron microscopy, spinal cord neurofibrillary pathology was visible in mice aged 3 months; however, AT8 immunoreactivity was not yet observed in Tau58/4 mice. Behavioral abnormalities and memory deficits occurred at a later stage (>9 months) when tau pathology was fully disseminated throughout the brain. Spatiotemporally, tau pathology spread from the spinal cord via the midbrain to the frontal cortex, while the hippocampus was relatively spared, thus explaining the late onset of cognitive deficits. CONCLUSIONS: Our findings indicate the face and construct validity of both Tau58 models, which may provide new, valuable insights into the pathologic effects of tau species in vivo and may consequently facilitate the development of new therapeutic targets to delay or halt neurodegenerative processes occurring in tauopathies.

10.
Curr Protoc ; 3(9): e880, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37728252

RESUMEN

The last decades have illustrated the importance of microRNAs (miRNAs) in various biological and pathological processes. The combined visualization of miRNAs using fluorescent in situ hybridization (FISH) and proteins using immunofluorescence (IF) can reveal their spatiotemporal distribution in relation to the cell and tissue morphology and can provide interesting insights into miRNA-protein interactions. However, standardized protocols for co-localization of miRNAs and proteins are currently lacking, and substantial technical obstacles still need to be addressed. In particular, the incompatibility of protein IF protocols with steps required for miRNA FISH, such as proteolytic pretreatments and ethylcarbodiimide post-fixation, as well as hurdles related to low signal intensity of low-copy miRNAs, remains challenging. Our technique may considerably enhance miRNA-based research, as current detection techniques lack the ability to elucidate cellular and subcellular localization. Here, we describe an optimized 2-day protocol for combined detection of low-abundant miRNAs and proteins in cryosections of cardiac tissue, without the need for protease-dependent pretreatment or post-fixation treatment. We successfully demonstrate endothelial-specific localization of low-abundant miR-181c-5p in cardiac tissue. © 2023 Wiley Periodicals LLC. Basic Protocol: Fluorescent in situ hybridization for miRNA combined with staining of proteins.


Asunto(s)
Crioultramicrotomía , MicroARNs , Hibridación Fluorescente in Situ , Endopeptidasas , Técnicas Histológicas , MicroARNs/genética , Péptido Hidrolasas
11.
Skelet Muscle ; 13(1): 12, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37537627

RESUMEN

BACKGROUND: Critical illness is hallmarked by severe stress and organ damage. Fibroblast growth factor 21 (FGF21) has been shown to rise during critical illness. FGF21 is a pleiotropic hormone that mediates adaptive responses to tissue injury and repair in various chronic pathological conditions. Animal studies have suggested that the critical illness-induced rise in FGF21 may to a certain extent protect against acute lung, liver, kidney and brain injury. However, FGF21 has also been shown to mediate fasting-induced loss of muscle mass and force. Such loss of muscle mass and force is a frequent problem of critically ill patients, associated with adverse outcome. In the present study, we therefore investigated whether the critical illness-induced acute rise in FGF21 is muscle-protective or rather contributes to the pathophysiology of critical illness-induced muscle weakness. METHODS: In a catheterised mouse model of critical illness induced by surgery and sepsis, we first assessed the effects of genetic FGF21 inactivation, and hence the inability to acutely increase FGF21, on survival, body weight, muscle wasting and weakness, and markers of muscle cellular stress and dysfunction in acute (30 h) and prolonged (5 days) critical illness. Secondly, we assessed whether any effects were mirrored by supplementing an FGF21 analogue (LY2405319) in prolonged critical illness. RESULTS: FGF21 was not required for survival of sepsis. Genetic FGF21 inactivation aggravated the critical illness-induced body weight loss (p = 0.0003), loss of muscle force (p = 0.03) and shift to smaller myofibers. This was accompanied by a more pronounced rise in markers of endoplasmic reticulum stress in muscle, without effects on impairments in mitochondrial respiratory chain enzyme activities or autophagy activation. Supplementing critically ill mice with LY2405319 did not affect survival, muscle force or weight, or markers of muscle cellular stress/dysfunction. CONCLUSIONS: Endogenous FGF21 is not required for sepsis survival, but may partially protect muscle force and may reduce cellular stress in muscle. Exogenous FGF21 supplementation failed to improve muscle force or cellular stress, not supporting the clinical applicability of FGF21 supplementation to protect against muscle weakness during critical illness.


Asunto(s)
Enfermedad Crítica , Sepsis , Animales , Ratones , Estrés del Retículo Endoplásmico , Debilidad Muscular/etiología , Debilidad Muscular/metabolismo , Modelos Animales de Enfermedad , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/patología
12.
Angiogenesis ; 26(4): 505-522, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37120604

RESUMEN

Intraplaque (IP) angiogenesis is a key feature of advanced atherosclerotic plaques. Because IP vessels are fragile and leaky, erythrocytes are released and phagocytosed by macrophages (erythrophagocytosis), which leads to high intracellular iron content, lipid peroxidation and cell death. In vitro experiments showed that erythrophagocytosis by macrophages induced non-canonical ferroptosis, an emerging type of regulated necrosis that may contribute to plaque destabilization. Erythrophagocytosis-induced ferroptosis was accompanied by increased expression of heme-oxygenase 1 and ferritin, and could be blocked by co-treatment with third generation ferroptosis inhibitor UAMC-3203. Both heme-oxygenase 1 and ferritin were also expressed in erythrocyte-rich regions of carotid plaques from ApoE-/- Fbn1C1039G+/- mice, a model of advanced atherosclerosis with IP angiogenesis. The effect of UAMC-3203 (12.35 mg/kg/day) on atherosclerosis was evaluated in ApoE-/- Fbn1C1039G+/- mice fed a western-type diet (WD) for 12 weeks (n = 13 mice/group) or 20 weeks (n = 16-21 mice/group) to distinguish between plaques without and with established IP angiogenesis, respectively. A significant decrease in carotid plaque thickness was observed after 20 weeks WD (87 ± 19 µm vs. 166 ± 20 µm, p = 0.006), particularly in plaques with confirmed IP angiogenesis or hemorrhage (108 ± 35 µm vs. 322 ± 40 µm, p = 0.004). This effect was accompanied by decreased IP heme-oxygenase 1 and ferritin expression. UAMC-3203 did not affect carotid plaques after 12 weeks WD or plaques in the aorta, which typically do not develop IP angiogenesis. Altogether, erythrophagocytosis-induced ferroptosis during IP angiogenesis leads to larger atherosclerotic plaques, an effect that can be prevented by ferroptosis inhibitor UAMC-3203.


Asunto(s)
Aterosclerosis , Ferroptosis , Placa Aterosclerótica , Ratones , Animales , Fibrilina-1/metabolismo , Apolipoproteínas E/genética , Ferritinas , Oxigenasas/metabolismo , Hemo/metabolismo
13.
Front Med (Lausanne) ; 10: 1024926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923014

RESUMEN

Tissue-engineered products are at the cutting edge of innovation considering their potential to functionally and structurally repair various tissue defects when the body's own regenerative capacity is exhausted. At the ocular surface, the wound healing response to extensive conjunctival damage results in tissue repair with structural alterations or permanent scar formation rather than regeneration of the physiological conjunctiva. Conjunctival tissue engineering therefore represents a promising therapeutic option to reconstruct the ocular surface in severe cicatrizing pathologies. During the rapid race to be a pioneer, it seems that one of the fundamental steps of tissue engineering has been neglected; a proper cellular characterization of the tissue-engineered equivalents, both morphologically and functionally. Currently, no consensus has been reached on an identification strategy and/or markers for the characterization of cultured squamous epithelial and goblet cells. This study therefore evaluated the accuracy of promising markers to identify differentiated conjunctival-derived cells in human primary explant cultures through immunocytochemistry, including keratins (i.e., K7, K13, and K19) and mucins (i.e., MUC1, MUC5AC, and PAS-positivity). Comparison of the in vivo and in vitro cellular profiles revealed that the widely used goblet cell marker K7 does not function adequately in an in vitro setting. The other investigated markers offer a powerful tool to distinguish cultured squamous epithelial cells (i.e., MUC1 and K13), goblet cells (i.e., MUC5AC and PAS-staining), and conjunctival-derived cells in general (i.e., K19). In conclusion, this study emphasizes the power alongside potential pitfalls of conjunctival markers to assess the clinical safety and efficacy of conjunctival tissue-engineered products.

14.
Virchows Arch ; 482(6): 1035-1045, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36702937

RESUMEN

Immunohistochemical stains (IHC) reveal differences between liver lobule zones in health and disease, including nonalcoholic fatty liver disease (NAFLD). However, such differences are difficult to accurately quantify. In NAFLD, the presence of lipid vacuoles from macrovesicular steatosis further hampers interpretation by pathologists. To resolve this, we applied a zonal image analysis method to measure the distribution of hypoxia markers in the liver lobule of steatotic livers.The hypoxia marker pimonidazole was assessed with IHC in the livers of male C57BL/6 J mice on standard diet or choline-deficient L-amino acid-defined high-fat diet mimicking NAFLD. Another hypoxia marker, carbonic anhydrase IX, was evaluated by IHC in human liver tissue. Liver lobules were reconstructed in whole slide images, and staining positivity was quantified in different zones in hundreds of liver lobules. This method was able to quantify the physiological oxygen gradient along hepatic sinusoids in normal livers and panlobular spread of the hypoxia in NAFLD and to overcome the pronounced impact of macrovesicular steatosis on IHC. In a proof-of-concept study with an assessment of the parenchyma between centrilobular veins in human liver biopsies, carbonic anhydrase IX could be quantified correctly as well.The method of zonated quantification of IHC objectively quantifies the difference in zonal distribution of hypoxia markers (used as an example) between normal and NAFLD livers both in whole liver as well as in liver biopsy specimens. It constitutes a tool for liver pathologists to support visual interpretation and estimate the impact of steatosis on IHC results.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Masculino , Humanos , Anhidrasa Carbónica IX , Inmunohistoquímica , Ratones Endogámicos C57BL , Hígado/patología , Hipoxia/patología
15.
Nat Commun ; 13(1): 7083, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400767

RESUMEN

Approximately 20% of sleeping sickness patients exhibit respiratory complications, however, with a largely unknown role of the parasite. Here we show that tsetse fly-transmitted Trypanosoma brucei parasites rapidly and permanently colonize the lungs and occupy the extravascular spaces surrounding the blood vessels of the alveoli and bronchi. They are present as nests of multiplying parasites exhibiting close interactions with collagen and active secretion of extracellular vesicles. The local immune response shows a substantial increase of monocytes, macrophages, dendritic cells and γδ and activated αß T cells and a later influx of neutrophils. Interestingly, parasite presence results in a significant reduction of B cells, eosinophils and natural killer cells. T. brucei infected mice show no infection-associated pulmonary dysfunction, mirroring the limited pulmonary clinical complications during sleeping sickness. However, the substantial reduction of the various immune cells may render individuals more susceptible to opportunistic infections, as evident by a co-infection experiment with respiratory syncytial virus. Collectively, these observations provide insights into a largely overlooked target organ, and may trigger new diagnostic and supportive therapeutic approaches for sleeping sickness.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Moscas Tse-Tse , Ratones , Animales , Tripanosomiasis Africana/parasitología , Moscas Tse-Tse/parasitología , Tórax , Alveolos Pulmonares
16.
Alzheimers Res Ther ; 14(1): 148, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217211

RESUMEN

BACKGROUND: Imbalanced synaptic transmission appears to be an early driver in Alzheimer's disease (AD) leading to brain network alterations. Early detection of altered synaptic transmission and insight into mechanisms causing early synaptic alterations would be valuable treatment strategies. This study aimed to investigate how whole-brain networks are influenced at pre- and early-plague stages of AD and if these manifestations are associated with concomitant cellular and synaptic deficits.  METHODS: To this end, we used an established AD rat model (TgF344-AD) and employed resting state functional MRI and quasi-periodic pattern (QPP) analysis, a method to detect recurrent spatiotemporal motifs of brain activity, in parallel with state-of-the-art immunohistochemistry in selected brain regions. RESULTS: At the pre-plaque stage, QPPs in TgF344-AD rats showed decreased activity of the basal forebrain (BFB) and the default mode-like network. Histological analyses revealed increased astrocyte abundance restricted to the BFB, in the absence of amyloid plaques, tauopathy, and alterations in a number of cholinergic, gaba-ergic, and glutamatergic synapses. During the early-plaque stage, when mild amyloid-beta (Aß) accumulation was observed in the cortex and hippocampus, QPPs in the TgF344-AD rats normalized suggesting the activation of compensatory mechanisms during this early disease progression period. Interestingly, astrogliosis observed in the BFB at the pre-plaque stage was absent at the early-plaque stage. Moreover, altered excitatory/inhibitory balance was observed in cortical regions belonging to the default mode-like network. In wild-type rats, at both time points, peak activity in the BFB preceded peak activity in other brain regions-indicating its modulatory role during QPPs. However, this pattern was eliminated in TgF344-AD suggesting that alterations in BFB-directed neuromodulation have a pronounced impact in network function in AD. CONCLUSIONS: This study demonstrates the value of rsfMRI and advanced network analysis methods to detect early alterations in BFB function in AD, which could aid early diagnosis and intervention in AD. Restoring the global synaptic transmission, possibly by modulating astrogliosis in the BFB, might be a promising therapeutic strategy to restore brain network function and delay the onset of symptoms in AD.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Animales , Prosencéfalo Basal/diagnóstico por imagen , Colinérgicos , Modelos Animales de Enfermedad , Gliosis , Placa Amiloide , Ratas , Ratas Endogámicas F344 , Ratas Transgénicas , Ácido gamma-Aminobutírico
17.
Brain Sci ; 12(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36291227

RESUMEN

To study the biodistribution of new chemical and biological entities, an in vitro model of the blood-brain barrier (BBB) may become an essential tool during early phases of drug discovery. Here, we present a proof-of-concept of an in-house designed three-dimensional BBB biochip designed by us. This three-dimensional dynamic BBB model consists of endothelial cells and astrocytes, co-cultured on opposing sides of a polymer-coated membrane under flow mimicking blood flow. Our results demonstrate a highly effective BBB as evidenced by (i) a 30-fold increase in transendothelial electrical resistance (TEER), (ii) a significantly higher expression of tight junction proteins, and (iii) the low FITC-dextran permeability of our technical solution as compared to a static in vitro BBB model. Importantly, our three-dimensional BBB model effectively expresses P-glycoprotein (Pg-p), a hallmark characteristic for brain-derived endothelial cells. In conclusion, we provide here a complete holistic approach and insight to the whole BBB system, potentially delivering translational significance in the clinical and pharmaceutical arenas.

18.
Mucosal Immunol ; 15(6): 1296-1308, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36071145

RESUMEN

Monocyte-derived macrophages (Mφs) are crucial regulators during muscularis inflammation. However, it is unclear which micro-environmental factors are responsible for monocyte recruitment and anti-inflammatory Mφ differentiation in this paradigm. Here, we investigate Mφ heterogeneity at different stages of muscularis inflammation and determine how environmental cues can attract and activate tissue-protective Mφs. Results showed that muscularis inflammation induced marked alterations in mononuclear phagocyte populations associated with a rapid infiltration of Ly6c+ monocytes that locally acquired unique transcriptional states. Trajectory inference analysis revealed two main pro-resolving Mφ subpopulations during the resolution of muscularis inflammation, i.e. Cd206+ MhcIIhi and Timp2+ MhcIIlo Mφs. Interestingly, we found that damage to the micro-environment upon muscularis inflammation resulted in EGC activation, which in turn stimulated monocyte infiltration and the consequent differentiation in anti-inflammatory CD206+ Mφs via CCL2 and CSF1, respectively. In addition, CSF1-CSF1R signaling was shown to be essential for the differentiation of monocytes into CD206+ Mφs and EGC proliferation during muscularis inflammation. Our study provides a comprehensive insight into pro-resolving Mφ differentiation and their regulators during muscularis inflammation. We deepened our understanding in the interaction between EGCs and Mφs, thereby highlighting pro-resolving Mφ differentiation as a potential novel therapeutic strategy for the treatment of intestinal inflammation.


Asunto(s)
Macrófagos , Monocitos , Humanos , Inflamación , Neuroglía , Antiinflamatorios
19.
Front Immunol ; 13: 811867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493461

RESUMEN

Immune checkpoint blockade (ICB) of the PD-1 pathway revolutionized the survival forecast for advanced non-small cell lung cancer (NSCLC). Yet, the majority of PD-L1+ NSCLC patients are refractory to anti-PD-L1 therapy. Recent observations indicate a pivotal role for the PD-L1+ tumor-infiltrating myeloid cells in therapy failure. As the latter comprise a heterogenous population in the lung tumor microenvironment, we applied an orthotopic Lewis Lung Carcinoma (LLC) model to evaluate 11 different tumor-residing myeloid subsets in response to anti-PD-L1 therapy. While we observed significantly reduced fractions of tumor-infiltrating MHC-IIlow macrophages and monocytes, serological levels of TNF-α restored in lung tumor-bearing mice. Notably, we demonstrated in vivo and in vitro that anti-PD-L1 therapy mediated a monocyte-specific production of, and response to TNF-α, further accompanied by their significant upregulation of CD80, VISTA, LAG-3, SIRP-α and TIM-3. Nevertheless, co-blockade of PD-L1 and TNF-α did not reduce LLC tumor growth. A phenomenon that was partly explained by the observation that monocytes and TNF-α play a Janus-faced role in anti-PD-L1 therapy-mediated CTL stimulation. This was endorsed by the observation that monocytes appeared crucial to effectively boost T cell-mediated LLC killing in vitro upon combined PD-L1 with LAG-3 or SIRP-α blockade. Hence, this study enlightens the biomarker potential of lung tumor-infiltrated monocytes to define more effective ICB combination strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Antígeno B7-H1/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico , Factores Inmunológicos/uso terapéutico , Inmunoterapia , Neoplasias Pulmonares/patología , Ratones , Monocitos , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/uso terapéutico
20.
Pharmaceutics ; 14(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35631525

RESUMEN

PURPOSE: RANKL expression in the tumor microenvironment has been identified as a biomarker of immune suppression, negating the effect of some cancer immunotherapies. Previously we had developed a radiotracer based on the FDA-approved RANKL-specific antibody denosumab, [89Zr]Zr-DFO-denosumab, enabling successful immuno-PET imaging. Radiolabeled denosumab, however, showed long blood circulation and delayed tumor uptake, potentially limiting its applications. Here we aimed to develop a smaller radiolabeled denosumab fragment, [64Cu]Cu-NOTA-denos-Fab, that would ideally show faster tumor accumulation and better diffusion into the tumor for the visualization of RANKL. EXPERIMENTAL DESIGN: Fab fragments were prepared from denosumab using papain and conjugated to a NOTA chelator for radiolabeling with 64Cu. The bioconjugates were characterized in vitro using SDS-PAGE analysis, and the binding affinity was assessed using a radiotracer cell binding assay. Small animal PET imaging evaluated tumor targeting and biodistribution in transduced RANKL-ME-180 xenografts. RESULTS: The radiolabeling yield of [64Cu]Cu-NOTA-denos-Fab was 58 ± 9.2%, with a specific activity of 0.79 ± 0.11 MBq/µg (n = 3). A radiotracer binding assay proved specific targeting of RANKL in vitro. PET imaging showed fast blood clearance and high tumor accumulation as early as 1 h p.i. (2.14 ± 0.21% ID/mL), which peaked at 5 h p.i. (2.72 ± 0.61% ID/mL). In contrast, [64Cu]Cu-NOTA-denosumab reached its highest tumor uptake at 24 h p.i. (6.88 ± 1.12% ID/mL). [64Cu]Cu-NOTA-denos-Fab specifically targeted human RANKL in transduced ME-180 xenografts compared with the blocking group and negative ME-180 xenograft model. Histological analysis confirmed RANKL expression in RANKL-ME-180 xenografts. CONCLUSIONS: Here, we report on a novel RANKL PET imaging agent, [64Cu]Cu-NOTA-denos-Fab, that allows for fast tumor imaging with improved imaging contrast when compared with its antibody counterpart, showing promise as a potential PET RANKL imaging tool for future clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA