Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Sci Rep ; 14(1): 5653, 2024 03 07.
Article En | MEDLINE | ID: mdl-38454117

Epilepsy affects around 1% of the population worldwide. Anti-epileptic drugs are an excellent option for controlling seizure occurrence but do not work for around one-third of patients. Warning devices employing seizure prediction or forecasting algorithms could bring patients new-found comfort and quality of life. These algorithms would attempt to detect a seizure's preictal period, a transitional moment between regular brain activity and the seizure, and relay this information to the user. Over the years, many seizure prediction studies using Electroencephalogram-based methodologies have been developed, triggering an alarm when detecting the preictal period. Recent studies have suggested a shift in view from prediction to forecasting. Seizure forecasting takes a probabilistic approach to the problem in question instead of the crisp approach of seizure prediction. In this field of study, the triggered alarm to symbolize the detection of a preictal period is substituted by a constant risk assessment analysis. The present work aims to explore methodologies capable of seizure forecasting and establish a comparison with seizure prediction results. Using 40 patients from the EPILEPSIAE database, we developed several patient-specific prediction and forecasting algorithms with different classifiers (a Logistic Regression, a 15 Support Vector Machines ensemble, and a 15 Shallow Neural Networks ensemble). Results show an increase of the seizure sensitivity in forecasting relative to prediction of up to 146% and in the number of patients that displayed an improvement over chance of up to 300%. These results suggest that a seizure forecasting methodology may be more suitable for seizure warning devices than a seizure prediction one.


Epilepsy , Quality of Life , Humans , Seizures/diagnosis , Epilepsy/diagnosis , Electroencephalography/methods , Forecasting , Machine Learning , Algorithms
2.
IEEE Trans Biomed Eng ; PP2024 Feb 21.
Article En | MEDLINE | ID: mdl-38381628

OBJECTIVE: Seizure prediction is a promising solution to improve the quality of life for drug-resistant patients, which concerns nearly 30% of patients with epilepsy. The present study aimed to ascertain the impact of incorporating sleep-wake information in seizure prediction. METHODS: We developed five patient-specific prediction approaches that use vigilance state information differently: i) using it as an input feature, ii) building a pool of two classifiers, each with different weights to sleep/wake training samples, iii) building a pool of two classifiers, each with only sleep/wake samples, iv) changing the alarm-threshold concerning each sleep/wake state, and v) adjusting the alarm-threshold after a sleep-wake transition. We compared these approaches with a control method that did not integrate sleep-wake information. Our models were tested with data (43 seizures and 482 hours) acquired during presurgical monitoring of 17 patients from the EPILEPSIAE database. As EPILEPSIAE does not contain vigilance state annotations, we developed a sleep-wake classifier using 33 patients diagnosed with nocturnal frontal lobe epilepsy from the CAP Sleep database. RESULTS: Although different patients may require different strategies, our best approach, the pool of weighted predictors, obtained 65% of patients performing above chance level with a surrogate analysis (against 41% in the control method). CONCLUSION: The inclusion of vigilance state information improves seizure prediction. Higher results and testing with longterm recordings from daily-life conditions are necessary to ensure clinical acceptance. SIGNIFICANCE: As automated sleep-wake detection is possible, it would be feasible to incorporate these algorithms into future devices for seizure prediction.

3.
Sci Rep ; 14(1): 407, 2024 01 03.
Article En | MEDLINE | ID: mdl-38172583

Almost one-third of epileptic patients fail to achieve seizure control through anti-epileptic drug administration. In the scarcity of completely controlling a patient's epilepsy, seizure prediction plays a significant role in clinical management and providing new therapeutic options such as warning or intervention devices. Seizure prediction algorithms aim to identify the preictal period that Electroencephalogram (EEG) signals can capture. However, this period is associated with substantial heterogeneity, varying among patients or even between seizures from the same patient. The present work proposes a patient-specific seizure prediction algorithm using post-processing techniques to explore the existence of a set of chronological events of brain activity that precedes epileptic seizures. The study was conducted with 37 patients with Temporal Lobe Epilepsy (TLE) from the EPILEPSIAE database. The designed methodology combines univariate linear features with a classifier based on Support Vector Machines (SVM) and two post-processing techniques to handle pre-seizure temporality in an easily explainable way, employing knowledge from network theory. In the Chronological Firing Power approach, we considered the preictal as a sequence of three brain activity events separated in time. In the Cumulative Firing Power approach, we assumed the preictal period as a sequence of three overlapping events. These methodologies were compared with a control approach based on the typical machine learning pipeline. We considered a Seizure Prediction horizon (SPH) of 5 mins and analyzed several values for the Seizure Occurrence Period (SOP) duration, between 10 and 55 mins. Our results showed that the Cumulative Firing Power approach may improve the seizure prediction performance. This new strategy performed above chance for 62% of patients, whereas the control approach only validated 49% of its models.


Epilepsy , Seizures , Humans , Seizures/diagnosis , Epilepsy/diagnosis , Electroencephalography/methods , Algorithms , Machine Learning
4.
Sci Rep ; 13(1): 5918, 2023 04 11.
Article En | MEDLINE | ID: mdl-37041158

The development of seizure prediction models is often based on long-term scalp electroencephalograms (EEGs) since they capture brain electrical activity, are non-invasive, and come at a relatively low-cost. However, they suffer from major shortcomings. First, long-term EEG is usually highly contaminated with artefacts. Second, changes in the EEG signal over long intervals, known as concept drift, are often neglected. We evaluate the influence of these problems on deep neural networks using EEG time series and on shallow neural networks using widely-used EEG features. Our patient-specific prediction models were tested in 1577 hours of continuous EEG, containing 91 seizures from 41 patients with temporal lobe epilepsy who were undergoing pre-surgical monitoring. Our results showed that cleaning EEG data, using a previously developed artefact removal method based on deep convolutional neural networks, improved prediction performance. We also found that retraining the models over time reduced false predictions. Furthermore, the results show that although deep neural networks processing EEG time series are less susceptible to false alarms, they may need more data to surpass feature-based methods. These findings highlight the importance of robust data denoising and periodic adaptation of seizure prediction models.


Artifacts , Epilepsy, Temporal Lobe , Humans , Seizures , Neural Networks, Computer , Electroencephalography/methods
5.
Epilepsia Open ; 8(2): 285-297, 2023 06.
Article En | MEDLINE | ID: mdl-37073831

Many state-of-the-art methods for seizure prediction, using the electroencephalogram, are based on machine learning models that are black boxes, weakening the trust of clinicians in them for high-risk decisions. Seizure prediction concerns a multidimensional time-series problem that performs continuous sliding window analysis and classification. In this work, we make a critical review of which explanations increase trust in models' decisions for predicting seizures. We developed three machine learning methodologies to explore their explainability potential. These contain different levels of model transparency: a logistic regression, an ensemble of 15 support vector machines, and an ensemble of three convolutional neural networks. For each methodology, we evaluated quasi-prospectively the performance in 40 patients (testing data comprised 2055 hours and 104 seizures). We selected patients with good and poor performance to explain the models' decisions. Then, with grounded theory, we evaluated how these explanations helped specialists (data scientists and clinicians working in epilepsy) to understand the obtained model dynamics. We obtained four lessons for better communication between data scientists and clinicians. We found that the goal of explainability is not to explain the system's decisions but to improve the system itself. Model transparency is not the most significant factor in explaining a model decision for seizure prediction. Even when using intuitive and state-of-the-art features, it is hard to understand brain dynamics and their relationship with the developed models. We achieve an increase in understanding by developing, in parallel, several systems that explicitly deal with signal dynamics changes that help develop a complete problem formulation.


Epilepsy , Goals , Humans , Seizures/diagnosis , Brain , Electroencephalography/methods
6.
Sci Rep ; 13(1): 784, 2023 01 16.
Article En | MEDLINE | ID: mdl-36646727

Typical seizure prediction models aim at discriminating interictal brain activity from pre-seizure electrographic patterns. Given the lack of a preictal clinical definition, a fixed interval is widely used to develop these models. Recent studies reporting preictal interval selection among a range of fixed intervals show inter- and intra-patient preictal interval variability, possibly reflecting the heterogeneity of the seizure generation process. Obtaining accurate labels of the preictal interval can be used to train supervised prediction models and, hence, avoid setting a fixed preictal interval for all seizures within the same patient. Unsupervised learning methods hold great promise for exploring preictal alterations on a seizure-specific scale. Multivariate and univariate linear and nonlinear features were extracted from scalp electroencephalography (EEG) signals collected from 41 patients with drug-resistant epilepsy undergoing presurgical monitoring. Nonlinear dimensionality reduction was performed for each group of features and each of the 226 seizures. We applied different clustering methods in searching for preictal clusters located until 2 h before the seizure onset. We identified preictal patterns in 90% of patients and 51% of the visually inspected seizures. The preictal clusters manifested a seizure-specific profile with varying duration (22.9 ± 21.0 min) and starting time before seizure onset (47.6 ± 27.3 min). Searching for preictal patterns on the EEG trace using unsupervised methods showed that it is possible to identify seizure-specific preictal signatures for some patients and some seizures within the same patient.


Drug Resistant Epilepsy , Electroencephalography , Humans , Electroencephalography/methods , Seizures/diagnosis , Drug Resistant Epilepsy/diagnosis , Cluster Analysis , Scalp
7.
Sci Data ; 9(1): 512, 2022 08 20.
Article En | MEDLINE | ID: mdl-35987693

Scalp electroencephalogram is a non-invasive multi-channel biosignal that records the brain's electrical activity. It is highly susceptible to noise that might overshadow important data. Independent component analysis is one of the most used artifact removal methods. Independent component analysis separates data into different components, although it can not automatically reject the noisy ones. Therefore, experts are needed to decide which components must be removed before reconstructing the data. To automate this method, researchers have developed classifiers to identify noisy components. However, to build these classifiers, they need annotated data. Manually classifying independent components is a time-consuming task. Furthermore, few labelled data are publicly available. This paper presents a source of annotated electroencephalogram independent components acquired from patients with epilepsy (EPIC Dataset). This dataset contains 77,426 independent components obtained from approximately 613 hours of electroencephalogram, visually inspected by two experts, which was already successfully utilised to develop independent component classifiers.


Artifacts , Epilepsy , Algorithms , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Signal Processing, Computer-Assisted
8.
Epilepsia Open ; 7(2): 247-259, 2022 06.
Article En | MEDLINE | ID: mdl-35377561

Seizure prediction may be the solution for epileptic patients whose drugs and surgery do not control seizures. Despite 46 years of research, few devices/systems underwent clinical trials and/or are commercialized, where the most recent state-of-the-art approaches, as neural networks models, are not used to their full potential. The latter demonstrates the existence of social barriers to new methodologies due to data bias, patient safety, and legislation compliance. In the form of literature review, we performed a qualitative study to analyze the seizure prediction ecosystem to find these social barriers. With the Grounded Theory, we draw hypotheses from data, while with the Actor-Network Theory we considered that technology shapes social configurations and interests, being fundamental in healthcare. We obtained a social network that describes the ecosystem and propose research guidelines aiming at clinical acceptance. Our most relevant conclusion is the need for model explainability, but not necessarily intrinsically interpretable models, for the case of seizure prediction. Accordingly, we argue that it is possible to develop robust prediction models, including black-box systems to some extent, while avoiding data bias, ensuring patient safety, and still complying with legislation, if they can deliver human- comprehensible explanations. Due to skepticism and patient safety reasons, many authors advocate the use of transparent models which may limit their performance and potential. Our study highlights a possible path, by using model explainability, on how to overcome these barriers while allowing the use of more computationally robust models.


Electroencephalography , Epilepsy , Ecosystem , Electroencephalography/methods , Humans , Neural Networks, Computer , Seizures/diagnosis
9.
Article En | MEDLINE | ID: mdl-35213313

OBJECTIVE: Independent component analysis (ICA) is commonly used to remove noisy artifacts from multi-channel scalp electroencephalogram (EEG) signals. ICA decomposes EEG into different independent components (ICs) and then, experts remove the noisy ones. This process is highly time-consuming and experts are not always available. To surpass this drawback, research is going on to develop models to automatically conduct IC classification. Current state-of-the-art models use power spectrum densities (PSDs) and topoplots to classify ICs. The performance of these methods may be limited by disregarding the IC time-series that would contribute to fully simulate the visual inspection performed by experts. METHODS: We present a novel ensemble deep neural network that combines time-series, PSDs, and topoplots to classify ICs. Moreover, we study the ability to use our model in transfer learning approaches. RESULTS: Experimental results showed that using time-series improves IC classification. Results also indicated that transfer learning obtained higher performance than simply training a new model from scratch. CONCLUSION: Researchers should develop IC classifiers using the three sources of information. Moreover, transfer learning approaches should be considered when producing new deep learning models. SIGNIFICANCE: This work improves IC classification, enhancing the automatic removal of EEG artifacts. Additionally, since labelled ICs are generally not publicly available, the possibility of using our model in transfer learning studies may motivate other researchers to develop their own classifiers.


Artifacts , Signal Processing, Computer-Assisted , Algorithms , Brain , Electroencephalography/methods , Humans , Neural Networks, Computer
10.
Sci Rep ; 11(1): 5987, 2021 03 16.
Article En | MEDLINE | ID: mdl-33727606

Electrocardiogram (ECG) recordings, lasting hours before epileptic seizures, have been studied in the search for evidence of the existence of a preictal interval that follows a normal ECG trace and precedes the seizure's clinical manifestation. The preictal interval has not yet been clinically parametrized. Furthermore, the duration of this interval varies for seizures both among patients and from the same patient. In this study, we performed a heart rate variability (HRV) analysis to investigate the discriminative power of the features of HRV in the identification of the preictal interval. HRV information extracted from the linear time and frequency domains as well as from nonlinear dynamics were analysed. We inspected data from 238 temporal lobe seizures recorded from 41 patients with drug-resistant epilepsy from the EPILEPSIAE database. Unsupervised methods were applied to the HRV feature dataset, thus leading to a new perspective in preictal interval characterization. Distinguishable preictal behaviour was exhibited by 41% of the seizures and 90% of the patients. Half of the preictal intervals were identified in the 40 min before seizure onset. The results demonstrate the potential of applying clustering methods to HRV features to deepen the current understanding of the preictal state.


Drug Resistant Epilepsy/diagnosis , Drug Resistant Epilepsy/physiopathology , Electrocardiography , Electroencephalography , Heart Rate , Algorithms , Biomarkers , Cluster Analysis , Data Analysis , Disease Management , Disease Susceptibility , Drug Resistant Epilepsy/etiology , Humans , Unsupervised Machine Learning
11.
Sci Rep ; 11(1): 3415, 2021 02 09.
Article En | MEDLINE | ID: mdl-33564050

Seizure prediction may improve the quality of life of patients suffering from drug-resistant epilepsy, which accounts for about 30% of the total epileptic patients. The pre-ictal period determination, characterized by a transitional stage between normal brain activity and seizure, is a critical step. Past approaches failed to attain real-world applicability due to lack of generalization capacity. More recently, deep learning techniques may outperform traditional classifiers and handle time dependencies. However, despite the existing efforts for providing interpretable insights, clinicians may not be willing to make high-stake decisions based on them. Furthermore, a disadvantageous aspect of the more usual seizure prediction pipeline is its modularity and significant independence between stages. An alternative could be the construction of a search algorithm that, while considering pipeline stages' synergy, fine-tunes the selection of a reduced set of features that are widely used in the literature and computationally efficient. With extracranial recordings from 19 patients suffering from temporal-lobe seizures, we developed a patient-specific evolutionary optimization strategy, aiming to generate the optimal set of features for seizure prediction with a logistic regression classifier, which was tested prospectively in a total of 49 seizures and 710 h of continuous recording and performed above chance for 32% of patients, using a surrogate predictor. These results demonstrate the hypothesis of pre-ictal period identification without the loss of interpretability, which may help understanding brain dynamics leading to seizures and improve prediction algorithms.


Algorithms , Drug Resistant Epilepsy/physiopathology , Electroencephalography , Epilepsy, Temporal Lobe/physiopathology , Precision Medicine , Seizures/physiopathology , Signal Processing, Computer-Assisted , Humans
12.
Sci Rep ; 10(1): 21038, 2020 12 03.
Article En | MEDLINE | ID: mdl-33273676

Multiple Sclerosis is a chronic inflammatory disease, affecting the Central Nervous System and leading to irreversible neurological damage, such as long term functional impairment and disability. It has no cure and the symptoms vary widely, depending on the affected regions, amount of damage, and the ability to activate compensatory mechanisms, which constitutes a challenge to evaluate and predict its course. Additionally, relapsing-remitting patients can evolve its course into a secondary progressive, characterized by a slow progression of disability independent of relapses. With clinical information from Multiple Sclerosis patients, we developed a machine learning exploration framework concerning this disease evolution, more specifically to obtain three predictions: one on conversion to secondary progressive course and two on disease severity with rapid accumulation of disability, concerning the 6th and 10th years of progression. For the first case, the best results were obtained within two years: AUC=[Formula: see text], sensitivity=[Formula: see text] and specificity=[Formula: see text]; and for the second, the best results were obtained for the 6th year of progression, also within two years: AUC=[Formula: see text], sensitivity=[Formula: see text], and specificity=[Formula: see text]. The Expanded Disability Status Scale value, the majority of functional systems, affected functions during relapses, and age at onset were described as the most predictive features. These results demonstrate the possibility of predicting Multiple Sclerosis progression by using machine learning, which may help to understand this disease's dynamics and thus, advise physicians on medication intake.


Diagnosis, Computer-Assisted/methods , Machine Learning , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Adult , Diagnosis, Computer-Assisted/standards , Disease Progression , Female , Humans , Male
...