Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 704, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851817

RESUMEN

Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins' involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Sirtuinas , Aspergillus fumigatus/patogenicidad , Aspergillus fumigatus/genética , Aspergillus fumigatus/enzimología , Sirtuinas/genética , Sirtuinas/metabolismo , Virulencia , Animales , Ratones , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Acetilación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Mariposas Nocturnas/microbiología
2.
PLoS Pathog ; 15(6): e1007871, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31226171

RESUMEN

Infection of host cells by Toxoplasma gondii is an active process, which is regulated by secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from specialized organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble into an adhesin complex secreted on the parasite surface that functions to promote infection competency. MIC1 and MIC4 are known to bind terminal sialic acid residues and galactose residues, respectively and to induce IL-12 production from splenocytes. Here we show that rMIC1- and rMIC4-stimulated dendritic cells and macrophages produce proinflammatory cytokines, and they do so by engaging TLR2 and TLR4. This process depends on sugar recognition, since point mutations in the carbohydrate-recognition domains (CRD) of rMIC1 and rMIC4 inhibit innate immune cells activation. HEK cells transfected with TLR2 glycomutants were selectively unresponsive to MICs. Following in vitro infection, parasites lacking MIC1 or MIC4, as well as expressing MIC proteins with point mutations in their CRD, failed to induce wild-type (WT) levels of IL-12 secretion by innate immune cells. However, only MIC1 was shown to impact systemic levels of IL-12 and IFN-γ in vivo. Together, our data show that MIC1 and MIC4 interact physically with TLR2 and TLR4 N-glycans to trigger IL-12 responses, and MIC1 is playing a significant role in vivo by altering T. gondii infection competency and murine pathogenesis.


Asunto(s)
Moléculas de Adhesión Celular/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Macrófagos/inmunología , Proteínas Protozoarias/inmunología , Ácidos Siálicos/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Toxoplasma/inmunología , Toxoplasmosis Animal/inmunología , Animales , Interleucina-12/inmunología , Ratones , Ratones Noqueados , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Toxoplasmosis Animal/genética
3.
PLoS Negl Trop Dis ; 9(9): e0004018, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26366580

RESUMEN

BACKGROUND: Leishmaniasis is a complex disease in which clinical outcome depends on factors such as parasite species, host genetics and immunity and vector species. In Brazil, Leishmania (Viannia) braziliensis is a major etiological agent of cutaneous (CL) and mucosal leishmaniasis (MCL), a disfiguring form of the disease, which occurs in ~10% of L. braziliensis-infected patients. Thus, clinical isolates from patients with CL and MCL may be a relevant source of information to uncover parasite factors contributing to pathogenesis. In this study, we investigated two pairs of L. (V.) braziliensis isolates from mucosal (LbrM) and cutaneous (LbrC) sites of the same patient to identify factors distinguishing parasites that migrate from those that remain at the primary site of infection. METHODOLOGY/PRINCIPAL FINDINGS: We observed no major genomic divergences among the clinical isolates by molecular karyotype and genomic sequencing. RT-PCR revealed that the isolates lacked Leishmania RNA virus (LRV). However, the isolates exhibited distinct in vivo pathogenesis in BALB/c mice; the LbrC isolates were more virulent than the LbrM isolates. Metabolomic analysis revealed significantly increased levels of 14 metabolites in LbrC parasites and 31 metabolites in LbrM parasites that were mainly related to inflammation and chemotaxis. A proteome comparative analysis revealed the overexpression of LbrPGF2S (prostaglandin f2-alpha synthase) and HSP70 in both LbrC isolates. Overexpression of LbrPGF2S in LbrC and LbrM promastigotes led to an increase in infected macrophages and the number of amastigotes per cell at 24-48 h post-infection (p.i.). CONCLUSIONS/SIGNIFICANCE: Despite sharing high similarity at the genome structure and ploidy levels, the parasites exhibited divergent expressed genomes. The proteome and metabolome results indicated differential profiles between the cutaneous and mucosal isolates, primarily related to inflammation and chemotaxis. BALB/c infection revealed that the cutaneous isolates were more virulent than the mucosal parasites. Furthermore, our data suggest that the LbrPGF2S protein is a candidate to contribute to parasite virulence profiles in the mammalian host.


Asunto(s)
Leishmania braziliensis/genética , Leishmania braziliensis/aislamiento & purificación , Leishmaniasis Mucocutánea/microbiología , Metaboloma , Membrana Mucosa/microbiología , Proteoma , Piel/microbiología , Animales , Brasil , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Leishmaniasis Mucocutánea/patología , Ratones Endogámicos BALB C , Membrana Mucosa/patología , Piel/patología
4.
Chem Biol Drug Des ; 81(6): 749-56, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23421616

RESUMEN

The leishmaniasis is a spectral disease caused by the protozoan Leishmania spp., which threatens millions of people worldwide. Current treatments exhibit high toxicity, and there is no vaccine available. The need for new lead compounds with leishmanicidal activity is urgent. Considering that many lead leishmanicidal compounds contain a quinoidal scaffold and the thiazole heterocyclic ring is found in a number of antimicrobial drugs, we proposed a hybridization approach to generate a diverse set of semi-synthetic heterocycles with antileishmanial activity. We found that almost all synthesized compounds demonstrated potent activity against promastigotes of Leishmania (Viannia) braziliensis and reduced the survival index of Leishmania amastigotes in mammalian macrophages. Furthermore, the compounds were not cytotoxic to macrophages at fivefold higher concentrations than the EC50 for promastigotes. All molecules fulfilled Lipinski's Rule of Five, which predicts efficient orally absorption and permeation through biological membranes, the in silico pharmacokinetic profile confirmed these characteristics. The potent and selective activity of semi-synthetic naphthothiazoles against promastigotes and amastigotes reveals that the 2-amino-naphthothiazole ring may represent a scaffold for the design of compounds with leishmanicidal properties and encourage the development of drug formulation and new compounds for further studies in vivo.


Asunto(s)
Antiprotozoarios/síntesis química , Tiazoles/química , Administración Oral , Animales , Antiprotozoarios/farmacocinética , Antiprotozoarios/toxicidad , Disponibilidad Biológica , Proteínas Sanguíneas/metabolismo , Supervivencia Celular/efectos de los fármacos , Semivida , Humanos , Leishmania braziliensis/efectos de los fármacos , Macrófagos/citología , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Tiazoles/farmacocinética , Tiazoles/toxicidad
5.
Am J Pathol ; 173(2): 423-32, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18599609

RESUMEN

KM(+) is a mannose-binding lectin from Artocarpus integrifolia that induces interleukin (IL)-12 production by macrophages and protective T helper 1 immune response against Leishmania major infection. In this study, we performed experiments to evaluate the therapeutic activity of jackfruit KM(+) (jfKM(+)) and its recombinant counterpart (rKM(+)) in experimental paracoccidioidomycosis. To this end, jfKM(+) or rKM(+) was administered to BALB/c mice 10 days after infection with Paracoccidiodes brasiliensis. Thirty days postinfection, lungs from the KM(+)-treated mice contained significantly fewer colony-forming units and little to no organized granulomas compared to the controls. In addition, lung homogenates from the KM(+)-treated mice presented higher levels of nitric oxide, IL-12, interferon-gamma, and tumor necrosis factor-alpha, whereas higher levels of IL-4 and IL-10 were detected in the control group. With mice deficient in IL-12, Toll-like receptor (TLR) 2, TLR4, or TLR adaptor molecule MyD88, we demonstrated that KM(+) led to protection against P. brasiliensis infection through IL-12 production, which was dependent on TLR2. These results demonstrated a beneficial effect of KM(+) on the severity of P. brasiliensis infection and may expand its potential use as a novel immunotherapeutic molecule.


Asunto(s)
Interleucina-12/biosíntesis , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Paracoccidioides/efectos de los fármacos , Paracoccidioidomicosis/tratamiento farmacológico , Lectinas de Plantas/uso terapéutico , Receptores de Superficie Celular/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Artocarpus , Células Cultivadas , Recuento de Colonia Microbiana , Citocinas/biosíntesis , Interleucina-12/genética , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Masculino , Receptor de Manosa , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Óxido Nítrico/metabolismo , Paracoccidioidomicosis/metabolismo , Lectinas de Plantas/farmacología , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Receptor Toll-Like 4/metabolismo
6.
Microbes Infect ; 8(3): 704-13, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16476564

RESUMEN

Paracoccidioides brasiliensis components interact with host cells and can influence the pathogenesis of paracoccidioidomycosis (PCM). Among the components released by P. brasiliensis, gp 43 and a heavily glycosylated antigen with MM>160 kDa are the most recognized by serum antibodies from patients with PCM. In order to isolate the high MM glycoconjugate, we carried out affinity chromatography of a crude exoantigen preparation on immobilized jacalin. The bound fraction (JBE, jacalin binding exoantigen) consisted of a major antigen of high MM and frequently of an additional 70-kDa minor protein. This protein, designated paracoccin, exhibited selective binding to immobilized GlcNAc, a property that was used for its purification. The structural data of paracoccin obtained by mass spectrometry of tryptic peptides did not match any known protein. Anti-paracoccin serum localized the lectin on the surface of P. brasiliensis yeasts, especially in the budding regions. Paracoccin was able to interact with laminin in a dose-dependent manner. This interaction was inhibited by GlcNAc, followed by D-glucose and D-mannose, but not by D-galactose, N-acetyl-galactosamine or L-fucose. Interestingly, paracoccin induced both resident and elicited mouse peritoneal cavity macrophages to release high and persistent levels of TNF-alpha in vitro, a fact that was associated with high nitric oxide production in elicited cells. Because binding to laminin can favor yeast adhesion and invasion of host tissues, and overproduction of NO has been associated with suppression of cell immunity, paracoccin is suggested to play an important role in PCM pathogenesis.


Asunto(s)
Proteínas Fúngicas/metabolismo , Laminina/metabolismo , Macrófagos/metabolismo , Paracoccidioides/metabolismo , Receptores N-Acetilglucosamina/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Antígenos Fúngicos/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Ratones , Óxido Nítrico/metabolismo , Paracoccidioides/citología , Unión Proteica , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...