Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 64(8): 3360-3374, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38597744

RESUMEN

HIV-1 Vpr is a multifunctional accessory protein consisting of 96 amino acids that play a critical role in viral pathogenesis. Among its diverse range of activities, Vpr can create a cation-selective ion channel within the plasma membrane. However, the oligomeric state of this channel has not yet been elucidated. In this study, we investigated the conformational dynamics of Vpr helices to model the ion channel topology. First, we employed a series of multiscale simulations to investigate the specific structure of monomeric Vpr in a membrane model. During the lipid bilayer self-assembly coarse grain simulation, the C-terminal helix (residues 56-77) effectively formed the transmembrane region, while the N-terminal helix exhibited an amphipathic nature by associating horizontally with a single leaflet. All-atom molecular dynamics (MD) simulations of full-length Vpr inside a phospholipid bilayer show that the C-terminal helix remains very stable inside the bilayer core in a vertical orientation. Subsequently, using the predicted C-terminal helix orientation and conformation, various oligomeric states (ranging from tetramer to heptamer) possibly forming the Vpr ion channel were built and further evaluated. Among these models, the pentameric form exhibited consistent stability in MD simulations and displayed a compatible conformation for a water-assisted ion transport mechanism. This study provides structural insights into the ion channel activity of the Vpr protein and the foundation for developing therapeutics against HIV-1 Vpr-related conditions.


Asunto(s)
Canales Iónicos , Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Conformación Proteica , VIH-1/química
2.
Comput Biol Chem ; 104: 107871, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37084691

RESUMEN

Nef is a small accessory protein pivotal in the HIV-1 viral replication cycle. It is a multifunctional protein and its interactions with kinases in host cells have been well characterized through many in vitro and structural studies. Nef forms a homodimer to activate the kinases and subsequently the phosphorylation pathways. The disruption of its homodimerization represents a valuable approach in the search for novel classes of antiretroviral. However, this research avenue is still underdeveloped as just a few Nef inhibitors have been reported so far, with very limited structural information about their mechanism of action. To address this issue, we have employed an in silico structure-based drug design strategy that combines de novo ligand design with molecular docking and extensive molecular dynamics simulations. Since the Nef pocket involved in homodimerization has high lipophilicity, the initial de novo-designed structures displayed poor drug-likeness and solubility. Taking information from the hydration sites within the homodimerization pocket, structural modifications in the initial lead compound have been introduced to improve the solubility and drug-likeness, without affecting the binding profile. We propose lead compounds that can be the starting point for further optimizations to deliver long-awaited, rationally designed Nef inhibitors.


Asunto(s)
VIH-1 , Simulación del Acoplamiento Molecular , Diseño Asistido por Computadora , Productos del Gen nef , Computadores
3.
Comput Biol Med ; 158: 106852, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37044047

RESUMEN

The term cancer refers to a plethora of diseases characterized by the development of abnormal cells that divide uncontrollably and can infiltrate further proximal or distal body tissues. Each type of cancer can be defined by aggressiveness, localization, metabolism, and response to available treatments. Among the most common hallmarks of cancer is a more acidic intracellular microenvironment. Offset pH values are due to an excess of lactate and an increased hypoxia-inducible factor (HIF) expression, which leads to a hypoxic state and a metabolic shift towards glycolysis to produce adenosine-5'-triphosphate (ATP) necessary for cellular metabolism. Warburg's hypothesis underpins this concept, making glycolysis and its central enzyme pyruvate kinase (hPKM2), an ideal target for drug development. Using molecular docking and extensive molecular dynamics (MD) simulations we investigated the binding mode of phosphoenolpyruvate (PEP) inside the hPKM2 active site, and then evaluated a set of known bio-isosteric inhibitors to understand the differences caused by their substitutions on their binding mode. Ultimately, we propose a new molecular entity to hamper hPKM2, unbalance cellular energy, and possibly trigger autophagic mechanisms.


Asunto(s)
Neoplasias , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Neoplasias/metabolismo , Glucólisis , Adenosina Trifosfato , Microambiente Tumoral
4.
Viruses ; 14(12)2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36560795

RESUMEN

The spike protein is key to SARS-CoV-2 high infectivity because it facilitates the receptor binding domain (RBD) encounter with ACE2. As targeting subunit S1 has not yet delivered an ACE2-binding inhibitor, we have assessed the druggability of the conserved segment of the spike protein stalk within subunit S2 by means of an integrated computational approach that combines the molecular docking of an optimized library of fragments with high-throughput molecular dynamics simulations. The high propensity of the spike protein to mutate in key regions that are responsible for the recognition of the human angiotensin-converting enzyme 2 (hACE2) or for the recognition of antibodies, has made subunit S1 of the spike protein difficult to target. Despite the inherent flexibility of the stalk region, our results suggest two hidden interhelical binding sites, whose accessibility is only partially hampered by glycan residues.


Asunto(s)
COVID-19 , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Simulación del Acoplamiento Molecular , Dominios Proteicos , Unión Proteica , Simulación de Dinámica Molecular
5.
Biomolecules ; 12(11)2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36358957

RESUMEN

After the SARS-CoV-2 Wuhan variant that gave rise to the pandemic, other variants named Delta, Omicron, and Omicron-2 sequentially became prevalent, with mutations spread around the viral genome, including on the spike (S) protein; in order to understand the resultant in gains in infectivity, we interrogated in silico both the equilibrium binding and the binding pathway of the virus' receptor-binding domain (RBD) to the angiotensin-converting enzyme 2 (ACE2) receptor. We interrogated the molecular recognition between the RBD of different variants and ACE2 through supervised molecular dynamics (SuMD) and classic molecular dynamics (MD) simulations to address the effect of mutations on the possible S protein binding pathways. Our results indicate that compensation between binding pathway efficiency and stability of the complex exists for the Omicron BA.1 receptor binding domain, while Omicron BA.2's mutations putatively improved the dynamic recognition of the ACE2 receptor, suggesting an evolutionary advantage over the previous strains.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Unión Proteica , Peptidil-Dipeptidasa A/química , COVID-19/genética , Receptores Virales/genética , Mutación
6.
Bioessays ; 44(9): e2200060, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35843871

RESUMEN

The SARS-CoV-2 virus is responsible for the COVID-19 pandemic the world experience since 2019. The protein responsible for the first steps of cell invasion, the spike protein, has probably received the most attention in light of its central role during infection. Computational approaches are among the tools employed by the scientific community in the enormous effort to study this new affliction. One of these methods, namely molecular dynamics (MD), has been used to characterize the function of the spike protein at the atomic level and unveil its structural features from a dynamic perspective. In this review, we focus on these main findings, including spike protein flexibility, rare S protein conformational changes, cryptic epitopes, the role of glycans, drug repurposing, and the effect of spike protein variants.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Simulación de Dinámica Molecular , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA