Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949321

RESUMEN

We show distinct CH-π interactions and assembly pathways for the amphiphile N-(fluorenylmethoxycarbonyl)-galactosamine and its epimer N-(fluorenylmethoxycarbonyl)-glucosamine. These differences result in the formation of supramolecular nanofibrous systems with opposite chirality. Our results showcase the importance of the carbohydrates structural diversity for their specific biointeractions and the opportunity that their ample interactome offers for synthesis of versatile and tunable supramolecular (bio) materials.

2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732135

RESUMEN

Glioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance. Thus, herein, a hydrogel with mechanical properties compatible with the brain and the ability to disrupt the dynamic and reciprocal interaction between fibronectin and tumor cells was produced. High-molecular-weight hyaluronic acid (HMW-HA) functionalized with the inhibitory fibronectin peptide Arg-Gly-Asp-Ser (RGDS) was used to produce the polymeric matrix. Liposomes encapsulating doxorubicin (DOX) were also included in the hydrogel to kill GBM cells. The resulting hydrogel containing liposomes with therapeutic DOX concentrations presented rheological properties like a healthy brain. In vitro assays demonstrated that unmodified HMW-HA hydrogels only caused GBM cell killing after DOX incorporation. Conversely, RGDS-functionalized hydrogels displayed per se cytotoxicity. As GBM cells produce several proteolytic enzymes capable of disrupting the peptide-HA bond, we selected MMP-2 to illustrate this phenomenon. Therefore, RGDS internalization can induce GBM cell apoptosis. Importantly, RGDS-functionalized hydrogel incorporating DOX efficiently damaged GBM cells without affecting astrocyte viability, proving its safety. Overall, the results demonstrate the potential of the RGDS-functionalized hydrogel to develop safe and effective GBM treatments.


Asunto(s)
Doxorrubicina , Fibronectinas , Glioblastoma , Ácido Hialurónico , Hidrogeles , Oligopéptidos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Oligopéptidos/química , Oligopéptidos/farmacología , Fibronectinas/metabolismo , Fibronectinas/antagonistas & inhibidores , Hidrogeles/química , Línea Celular Tumoral , Ácido Hialurónico/química , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Liposomas/química , Apoptosis/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo
3.
ACS Biomater Sci Eng ; 9(8): 4907-4915, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37493090

RESUMEN

Silica nanoparticles (SiNPs) are widely used in biomedical applications, such as cancer therapy/diagnosis or tissue engineering and regenerative medicine. Herein, we synthesized SiNPs and modified them with sulfonic acid groups (by organosilylation followed by oxidation) or a sulfated polysaccharide (i.e., fucoidan, a seaweed biopolymer, by using electrostatic surface immobilization) due to the known capacity of the sulfonic/sulfate moieties to stabilize proteins and promote stem cell differentiation toward the osteogenic lineage. The developed pristine and functionalized nanoparticles were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), showing the monodisperse size distribution (between 360 and 450 nm) and the success of the coating/functionalization with fucoidan or sulfonic groups. The developed SiNPs (at a concentration of 50 µg/mL) were assessed through their contact with SaOs2 cells evidencing their cytocompatibility. Furthermore, the osteogenic differentiation of bmMSCs was evaluated by the quantification of ALP activity, as well as the expression profile of osteogenic-related genes, such as Runx2, ALP, and OP. We found that the coating of the SiNPs with fucoidan induced the osteogenic differentiation of bmMSCs, being an effective mediator of bone regeneration.

4.
ACS Appl Mater Interfaces ; 15(25): 29998-30007, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37327399

RESUMEN

We applied a bottom-up approach to develop biofunctional supramolecular hydrogels from an aromatic glycodipeptide. The self-assembly of the glycopeptide was induced by either temperature manipulation (heating-cooling cycle) or solvent (DMSO to water) switch. The sol-gel transition was salt-triggered in cell culture media and resulted in gels with the same chemical compositions but different mechanical properties. Human adipose derived stem cells (hASCs) cultured on these gels under basal conditions (i.e., without differentiation factors) overexpressed neural markers, such as GFAP, Nestin, MAP2, and ßIII-tubulin, confirming the differentiation into neural lineages. The mechanical properties of the gels influenced the number and distribution of the adhered cells. A comparison with gels obtained from the nonglycosylated peptide showed that glycosylation is crucial for the biofunctionality of the hydrogels by capturing and preserving essential growth factors, e.g., FGF-2.


Asunto(s)
Glicopéptidos , Hidrogeles , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Diferenciación Celular , Adipocitos , Células Madre , Células Cultivadas
5.
ACS Biomater Sci Eng ; 9(5): 2514-2523, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37074315

RESUMEN

The thymus is responsible for the selection and development of T cells, having an essential role in the establishment of adaptive immunity. Thymic epithelial cells (TECs) are key players in T cell development interacting with thymocytes in the thymic 3D environment. Feeder-layer cells have been frequently used as platforms for the successful establishment of TEC cultures. Nevertheless, the role of the feeder cell-derived extracellular matrix (ECM) on TEC cultures was not previously reported. Therefore, this work aimed at assessing the effect of the ECM produced by feeder cells cultured at two different densities on the establishment of TEC culture. Due to the high surface area and porosity, electrospun fibrous meshes were used to support ECM deposition. The feeder cell-derived ECM was efficiently recovered after decellularization, maintaining the composition of major proteins. All the decellularized matrices were permeable and showed an increase in surface mechanical properties after decellularization. TEC cultures confirmed that the ECM density impacts cellular performance, with higher densities showing a decreased cellular activity. Our findings provide evidence that feeder cell-derived ECM is a suitable substrate for TEC culture and can potentially be applied in thymus bioengineering.


Asunto(s)
Células Epiteliales , Matriz Extracelular , Células Nutrientes , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Linfocitos T/metabolismo , Timo/metabolismo
6.
Bioengineering (Basel) ; 10(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36671634

RESUMEN

Corneal pathologies from infectious or noninfectious origin have a significant impact on the daily lives of millions of people worldwide. Despite the risk of organ rejection or infection, corneal transplantation is currently the only effective treatment. Finding safe and innovative strategies is the main goal of tissue-engineering-based approaches. In this study, the potential of gelatin methacryloyl (GelMA) hydrogels produced from marine-derived gelatin and loaded with ascorbic acid (as an enhancer of the biological activity of cells) was evaluated for corneal stromal applications. Marine GelMA was synthesized with a methacrylation degree of 75%, enabling effective photocrosslinking, and hydrogels with or without ascorbic acid were produced, encompassing human keratocytes. All the produced formulations exhibited excellent optical and swelling properties with easy handling as well as structural stability and adequate degradation rates that may allow proper extracellular matrix remodeling by corneal stromal cells. Formulations loaded with 0.5 mg/mL of ascorbic acid enhanced the biological performance of keratocytes and induced collagen production. These results suggest that, in addition to marine-derived gelatin being suitable for the synthesis of GelMA, the hydrogels produced are promising biomaterials for corneal regeneration applications.

7.
Cancers (Basel) ; 15(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36672309

RESUMEN

Bladder cancer (BlCa), specifically urothelial carcinomas, is a heterogeneous disease that derives from the urothelial lining. Two main classes of BlCa are acknowledged: the non-muscle invasive BlCa and the muscle-invasive BlCa; the latter constituting an aggressive disease which invades locally and metastasizes systemically. Distinguishing the specific microenvironment that cancer cells experience between mucosa and muscularis propria layers can help elucidate how these cells acquire invasive capacities. In this work, we propose to measure the micromechanical properties of both mucosa and muscularis propria layers of the bladder wall of BlCa patients, using atomic force microscopy (AFM). To do that, two cross-sections of both the macroscopically normal urinary bladder wall and the bladder wall adjacent to the tumor were collected and immediately frozen, prior to AFM samples analysis. The respective "twin" formalin-fixed paraffin-embedded tissue fragments were processed and later evaluated for histopathological examination. H&E staining suggested that tumors promoted the development of muscle-like structures in the mucosa surrounding the neoplastic region. The average Young's modulus (cell stiffness) in tumor-adjacent specimens was significantly higher in the muscularis propria than in the mucosa. Similarly, the tumor-free specimens had significantly higher Young's moduli in the muscularis propria than in the urothelium. Young's moduli were higher in all layers of tumor-adjacent tissues when compared with tumor-free samples. Here we provide insights into the stiffness of the bladder wall layers, and we show that the presence of tumor in the surrounding mucosa leads to an alteration of its smooth muscle content. The quantitative assessment of stiffness range here presented provides essential data for future research on BlCa and for understanding how the biomechanical stimuli can modulate cancer cells' capacity to invade through the different bladder layers.

8.
Biomater Adv ; 144: 213227, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36470174

RESUMEN

The three-dimensional (3D) organization of cells affects their mobility, proliferation, and overall response to treatment. Spheroids, organoids, and microfluidic chips are used in cancer research to reproduce in vitro the complex and dynamic malignant microenvironment. Herein, single- and double-channel microfluidic devices are used to mimic the spatial organization of brain tumors and investigate the therapeutic efficacy of molecular and nano anti-cancer agents. Human glioblastoma multiforme (U87-MG) cells were cultured into a Matrigel matrix embedded within the microfluidic devices and exposed to different doses of free docetaxel (DTXL), docetaxel-loaded spherical polymeric nanoparticles (DTXL-SPN), and the aromatic N-glucoside N-(fluorenylmethoxycarbonyl)-glucosamine-6-phosphate (Fmoc-Glc6P). We observed that in the single-channel microfluidic device, brain tumor cells are more susceptible to DTXL treatment as compared to conventional cell monolayers (50-fold lower IC50 values). In the double-channel device, the cytotoxicity of free DTXL and DTXL-SPN is comparable, but significantly lowered as compared to the single-channel configuration. Finally, the administration of 500 µM Fmoc-Glc6P in the double-channel microfluidic device shows a 50 % U87-MG cell survival after only 24 h, and no deleterious effect on human astrocytes over 72 h. Concluding, the proposed microfluidic chips can be used to reproduce the 3D complex spatial arrangement of solid tumors and to assess the anti-cancer efficacy of therapeutic compounds administrated in situ or systemically.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Nanopartículas , Humanos , Docetaxel , Neoplasias Encefálicas/tratamiento farmacológico , Dispositivos Laboratorio en un Chip , Microambiente Tumoral
9.
ACS Appl Mater Interfaces ; 13(50): 59673-59682, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34874691

RESUMEN

The self-assembly of amyloid-ß (Aß) generates cytotoxic oligomers linked to the onset and progression of Alzheimer's disease (AD). As many fundamental molecular pathways that control Aß aggregation are yet to be unraveled, an important strategy to control Aß cytotoxicity is the development of bioactive synthetic nanotools capable of interacting with the heterogeneous ensemble of Aß species and remodel them into noncytotoxic forms. Herein, the synthesis of nanosized, functional gallic acid (Ga)-based dendrimers with a precise number of Ga at their surface is described. It is shown that these Ga-terminated dendrimers interact by H-bonding with monomeric/oligomeric Aß species at their Glu, Ala, and Asp residues, promoting their remodeling into noncytotoxic aggregates in a process controlled by the Ga units. The multivalent presentation of Ga on the dendrimer surface enhances their ability to interact with Aß, inhibiting the primary and secondary nucleation of Aß fibrillization and disrupting the Aß preformed fibrils.


Asunto(s)
Péptidos beta-Amiloides , Dendrímeros , Ácido Gálico , Fragmentos de Péptidos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Amiloide/química , Péptidos beta-Amiloides/metabolismo , Línea Celular , Supervivencia Celular , Humanos , Nanotecnología , Fragmentos de Péptidos/metabolismo
10.
Biomaterials ; 279: 121217, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34781243

RESUMEN

The efficacy of current therapies for skeletal muscle disorders/injuries are limited urging the need for new treatments. Skeletal muscle tissue engineered platforms represent a promising tool to shed light on the pathophysiology of skeletal muscle disorders/injuries and to investigate the efficacy of new therapies. Herein, we developed a skeletal muscle platform composed of aligned and differentiated myoblasts on micropatterned gellan gum (GG)-based hydrogels tailored with a laminin-derived peptide. To this aim, the binding of murine skeletal muscle cells (C2C12) to different laminin-derived peptides (CIKVAVS (V), KNRLTIELEVRTC (T), and RKRLQVQLSIRTC (Q)) and the binding of laminin-derived peptides to chemically functionalized GG was studied. C2C12-binding to peptide V, T and Q was 10%, 48% and 25%, whereas the peptide tethering to GG was 60%, 40% and 31%, respectively. Peptide-biofunctionalized hydrogels prepared with different polymer content showed different mechanics and peptide exposure at hydrogel surface. Cellular adhesion was detected in all hydrogel formulations, but spreading and differentiation was only promoted in peptide Q-biofunctionalized hydrogels and preferably in stiffer hydrogels. Myoblast alignment was promoted in micropatterned hydrogel surfaces. Overall, the engineered skeletal muscle herein proposed can be further explored as a platform to better understand skeletal muscle disorders/injuries and to screen new therapies.


Asunto(s)
Hidrogeles , Laminina , Animales , Ratones , Músculo Esquelético , Péptidos , Polisacáridos Bacterianos , Ingeniería de Tejidos
11.
J Am Chem Soc ; 143(47): 19703-19710, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34797059

RESUMEN

We report on the supramolecular self-assembly of tripeptides and their O-glycosylated analogues, in which the carbohydrate moiety is coupled to a central serine or threonine flanked by phenylalanine residues. The substitution of serine with threonine introduces differential side-chain interactions, which results in the formation of aggregates with different morphology. O-glycosylation decreases the aggregation propensity because of rebalancing of the π interactions. The glycopeptides form aggregates with reduced stiffness but increased thermal stability. Our results demonstrate that the designed minimalistic glycopeptides retain critical functional features of glycoproteins and therefore are promising tools for elucidation of molecular mechanisms involved in the glycoprotein interactome. They can also serve as an inspiration for the design of functional glycopeptide-based biomaterials.


Asunto(s)
Glicoproteínas/metabolismo , Oligopéptidos/metabolismo , Glicoproteínas/química , Glicosilación , Simulación de Dinámica Molecular , Oligopéptidos/química , Conformación Proteica , Multimerización de Proteína
12.
Mater Sci Eng C Mater Biol Appl ; 126: 112124, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082941

RESUMEN

The repair of articular cartilage lesions in weight-bearing joints remains as a significant challenge due to the low regenerative capacity of this tissue. Hydrogels are candidates to repair lesions as they have similar properties to cartilage extracellular matrix but they are unable to meet the mechanical and biological requirements for a successful outcome. Here, we reinforce hyaluronic acid (HA) hydrogels with 13-93-lithium bioactive glass micro- and nanofibres produced by laser spinning. The glass fibres are a reinforcement filler and a platform for the delivery of therapeutic lithium-ions. The elastic modulus of the composites is more than three times higher than in HA hydrogels. Modelling of the reinforcement corroborates the experimental results. ATDC5 chondrogenic cells seeded on the composites are viable and more proliferation occurs on the hydrogels containing fibres than in HA hydrogels alone. Furthermore, the chondrogenic behavior on HA constructs with fibres containing lithium is more marked than in hydrogels with no-lithium fibres.


Asunto(s)
Ácido Hialurónico , Nanofibras , Hidrogeles , Rayos Láser , Litio
13.
ACS Med Chem Lett ; 12(4): 548-554, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33859794

RESUMEN

In Alzheimer's disease (AD), amyloid-ß (Aß) oligomers are considered key mediators of synaptic dysfunction and cognitive impairment. These unstable intermediate Aß species can interfere with different cellular organelles, leading to neuronal cell death, through the formation of Ca2+-permeable membrane pores, impairment in the levels of acetylcholine neurotransmitters, increased insulin resistance, promotion of pro-inflammatory cascades, among others. Based on a series of evidences that indicate the key role of glycosaminoglycans (GAGs) in amyloid plaque formation, we evaluated the capacity of four monosaccharides, i.e., glucosamine (GlcN), N-acetyl glucosamine (GlcNAc), glucosamine-6-sulfate (GlcN6S), and glucosamine-6-phosphate (GlcN6P), to reduce the Aß-mediated pathological hallmarks. The tested monosaccharides, in particular, GlcN6S and GlcN6P, were able to interact with Aß aggregates, reducing neuronal cell death, Aß-mediated damage to the cellular membrane, acetylcholinesterase activity, insulin resistance, and pro-inflammation levels.

14.
Chem Commun (Camb) ; 57(25): 3158, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33729246

RESUMEN

Correction for 'Vescalagin and castalagin reduce the toxicity of amyloid-beta42 oligomers through the remodelling of its secondary structure' by Ana R. Araújo et al., Chem. Commun., 2020, 56, 3187-3190, DOI: .

15.
ACS Biomater Sci Eng ; 7(3): 1022-1030, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33596039

RESUMEN

Polyphenols have been extensively exploited in the biomedical field because of their wide range of bioactive properties and historical use as traditional medicines. They typically present antioxidant, antimicrobial, antiamyloidogenic, and/or antitumor activities. In particular, cork water extracts and their components, have been previously reported to present antioxidant and antiamyloidogenic properties. On the basis of this knowledge, we tested cork water extract (CWE), cork water enriched extract (CWE-E), vescalagin/castalagin (two of the main polyphenols present in CWE and CWE-E) for their antibacterial activity against four bacterial strains, namely, methicillin-resistant Staphylococcus epidermidis (MRSE), Staphylococcus aureus (SA), methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa (PA). Vescalagin and castalagin presented bactericidal activity against all the tested bacterial strains, in particular toward the methicillin-resistant ones, i.e., MRSA and MRSE, as well as the ability to inhibit the formation of biofilms and to disrupt preformed ones. Moreover, vescalagin/castalagin seem to modulate the normal assembly of the peptidoglycans at the bacteria surface, promoting the disruption of their cell wall, leading to bacterial cell death. We also demonstrate that vescalagin/castalagin can be loaded into alginate hydrogels to generate antibacterial biomaterials that are not toxic to eukaryotic cells.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Meticilina , Taninos Hidrolizables , Resistencia a la Meticilina , Pruebas de Sensibilidad Microbiana
16.
Mater Sci Eng C Mater Biol Appl ; 119: 111616, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321659

RESUMEN

Hyaluronic acid (HA) has a key role in cancer progression. The HA's molecular weight (Mw) is altered in this pathological state: increased concentration of shorter fragments due to the overexpressed hyaluronidases and ROS. Aiming to mimic this microenvironment, we developed a Layer-by-Layer (LbL) platform presenting HA of different Mws, namely 6.4, 752 and 1500 kDa, to study the influence of HA Mw on the formation of focal adhesion sites (FAs), and the involvement of paxillin and CD44 in this process. High paxillin expression and formation of FAs, via CD44, is observed for MKN45 cells seeded on LbLs presenting HA 6.4 kDa, with the activation of the ERK1/2 pathway, responsible for cell motility and tumour progression. In contrast, activation of p38 pathway, usually related with cancer latency, is observed for cells seeded on LbLs with high Mw HA, i.e. 1500 kDa. Overall, we demonstrate the suitability of the developed platform to study cancer invasiveness.


Asunto(s)
Ácido Hialurónico , Neoplasias Gástricas , Adhesión Celular , Movimiento Celular , Humanos , Receptores de Hialuranos , Peso Molecular , Neoplasias Gástricas/tratamiento farmacológico , Microambiente Tumoral
17.
Trends Biotechnol ; 39(1): 90-104, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32654775

RESUMEN

Hyaluronan (HA) is a critical element of the extracellular matrix (ECM). The regulated synthesis and degradation of HA modulates the ECM chemical and physical properties that, in turn, influence cellular behavior. HA triggers signaling pathways associated with the adhesion, proliferation, migration, and differentiation of cells, mediated by its interaction with specific cellular receptors or by tuning the mechanical properties of the ECM. This review summarizes the recent advances on strategies used to mimic the HA present in the ECM to study healthy or pathological cellular behavior. This includes the development of HA-based 2D and 3D in vitro tissue models for the seeding and encapsulation of cells, respectively, and HA particles as carriers for the targeted delivery of therapeutic agents.


Asunto(s)
Materiales Biocompatibles , Matriz Extracelular , Ácido Hialurónico , Animales , Materiales Biocompatibles/química , Células/citología , Sistemas de Liberación de Medicamentos , Matriz Extracelular/química , Humanos , Ácido Hialurónico/química
18.
ACS Appl Bio Mater ; 4(8): 6023-6035, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35006866

RESUMEN

Tissue engineered (TE) substitutes of clinically relevant sizes need an adequate vascular system to ensure function and proper tissue integration after implantation. However, the predictable vascularization of TE substitutes is yet to be achieved. Molecular weight variations in hyaluronic acid (HA) have been pointed to trigger angiogenesis. Thus, this study investigates HA oligomer immobilization as a promoter for TE construct vascularization. As a proof-of-concept, the surface of methacrylated gelatin (GelMA) hydrogels were functionalized with high molecular weight (HMW; 1.5 to 1.8 MDa) and low molecular weight (LMW; < 10 kDa) HA, previously modified with aldehyde groups to enable the immobilization through Schiff's base formation. The ability of A-HA to bind amine-presenting surfaces was confirmed by Surface Plasmon Resonance (SPR). Human Umbilical Vein Endothelial Cells (HUVECs) seeded over hydrogels functionalized with LMW HA showed higher proliferation and expression of angiogenic markers (KDR and CD31), than those grown in HMW HA conjugated- or plain surfaces, in line with the activation of HA ERK1/2 mediated downstream signaling. Moreover, when cocultured with human dental pulp cells (hDPCs) encapsulated into the GelMA, an increase in endothelial cell migration was observed for the LMW HA functionalized formulations. Overall LMW HA functionalization enhanced endothelial cell response showing potential as an angiogenesis inducer for TE applications.


Asunto(s)
Ácido Hialurónico , Ingeniería de Tejidos , Gelatina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ácido Hialurónico/farmacología , Hidrogeles/metabolismo
19.
Biomater Sci ; 9(1): 252-260, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33191428

RESUMEN

The present work reports on a 3D model of the tumor microenvironment that contains hyaluronic acid (HA) and alginate, and demonstrates the utility of this model to study the effect of HA size on the crosstalk between cancer cells and mesenchymal stem cells (MSCs). The system incorporates a core that contains HA of specific size (i.e. 6.4, 741 or 1500 kDa) with encapsulated epithelial MKN45 cancer cells and a shell with MSCs that mimic the presence of stem cells next to the tumor site. It was found that short HA (i.e. 6.4 kDa) promotes the invasion of cancer cells from the core to the shell, whereas longer HA (i.e. 741 and 1500 kDa) recruits the MSCs into the core, i.e. the tumor site, where a reduction of the formation of cancer cell aggregates was observed. In summary, the developed 3D model recapitulates some key tumor features related to the effect of HA size on both cancer cell invasiveness and MSC behavior at the tumor site.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias , Humanos , Ácido Hialurónico , Hidrogeles , Células Madre , Microambiente Tumoral
20.
Biomacromolecules ; 21(12): 4771-4780, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33238090

RESUMEN

Thymic epithelial cells (TECs) are the main regulators of T lymphocyte development and selection, requiring a three-dimensional (3D) environment to properly perform these biological functions. The aim of this work was to develop a 3D culture substrate that allows the survival and proliferation of TECs. Thus, electrospun fibrous meshes (eFMs) were functionalized with fibronectin, one of the major extracellular matrix (ECM) proteins of the thymus. For that, highly porous eFMs were activated using oxygen plasma treatment followed by amine insertion, which allows the immobilization of fibronectin through EDC/NHS chemistry. The medullary TECs presented increased proliferation, viability, and protein synthesis when cultured on fibronectin-functionalized eFMs (FN-eFMs). These cells showed a spread morphology, with increased migration toward the inner layers of FN-eFMs and the production of thymic ECM proteins, such as collagen type IV and laminin. These results suggest that FN-eFMs are an effective substrate for supporting thymic cell cultures.


Asunto(s)
Células Epiteliales , Fibronectinas , Animales , Diferenciación Celular , Células Cultivadas , Matriz Extracelular , Proteínas de la Matriz Extracelular , Laminina , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA