Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 18(12): 1370-1379, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35970996

RESUMEN

Pyrvinium is a quinoline-derived cyanine dye and an approved anti-helminthic drug reported to inhibit WNT signaling and have anti-proliferative effects in various cancer cell lines. To further understand the mechanism by which pyrvinium is cytotoxic, we conducted a pooled genome-wide CRISPR loss-of-function screen in the human HAP1 cell model. The top drug-gene sensitizer interactions implicated the malate-aspartate and glycerol-3-phosphate shuttles as mediators of cytotoxicity to mitochondrial complex I inhibition including pyrvinium. By contrast, perturbation of the poorly characterized gene C1orf115/RDD1 resulted in strong resistance to the cytotoxic effects of pyrvinium through dysregulation of the major drug efflux pump ABCB1/MDR1. Interestingly, C1orf115/RDD1 was found to physically associate with ABCB1/MDR1 through proximity-labeling experiments and perturbation of C1orf115 led to mis-localization of ABCB1/MDR1. Our results are consistent with a model whereby C1orf115 modulates drug efflux through regulation of the major drug exporter ABCB1/MDR1.


Asunto(s)
Antineoplásicos , Compuestos de Pirvinio , Humanos , Compuestos de Pirvinio/farmacología , Vía de Señalización Wnt , Antineoplásicos/farmacología , Genómica
3.
Cell Metab ; 34(6): 874-887.e6, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35504291

RESUMEN

The tumor microenvironment (TME) contains a rich source of nutrients that sustains cell growth and facilitate tumor development. Glucose and glutamine in the TME are essential for the development and activation of effector T cells that exert antitumor function. Immunotherapy unleashes T cell antitumor function, and although many solid tumors respond well, a significant proportion of patients do not benefit. In patients with KRAS-mutant lung adenocarcinoma, KEAP1 and STK11/Lkb1 co-mutations are associated with impaired response to immunotherapy. To investigate the metabolic and immune microenvironment of KRAS-mutant lung adenocarcinoma, we generated murine models that reflect the KEAP1 and STK11/Lkb1 mutational landscape in these patients. Here, we show increased glutamate abundance in the Lkb1-deficient TME associated with CD8 T cell activation in response to anti-PD1. Combination treatment with the glutaminase inhibitor CB-839 inhibited clonal expansion and activation of CD8 T cells. Thus, glutaminase inhibition negatively impacts CD8 T cells activated by anti-PD1 immunotherapy.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Adenocarcinoma del Pulmón , Linfocitos T CD8-positivos , Glutaminasa , Neoplasias Pulmonares , Quinasas de la Proteína-Quinasa Activada por el AMP/deficiencia , Quinasas de la Proteína-Quinasa Activada por el AMP/inmunología , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Glutaminasa/antagonistas & inhibidores , Glutaminasa/inmunología , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Activación de Linfocitos , Ratones , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral
4.
Toxicol Appl Pharmacol ; 401: 115103, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32522582

RESUMEN

Small cell lung cancer (SCLC) is a particularly aggressive subset of lung cancer, and identification of new therapeutic options is of significant interest. We recently reported that SCLC cell lines display a specific vulnerability to inhibition of squalene epoxidase (SQLE), an enzyme in the cholesterol biosynthetic pathway that catalyzes the conversion of squalene to 2,3-oxidosqualene. Since it has been reported that SQLE inhibition can result in dermatitis in dogs, we conducted a series of experiments to determine if SQLE inhibitors would be tolerated at exposures predicted to drive maximal efficacy in SCLC tumors. Detailed profiling of the SQLE inhibitor NB-598 showed that dogs did not tolerate predicted efficacious exposures, with dose-limiting toxicity due to gastrointestinal clinical observations, although skin toxicities were also observed. To extend these studies, two SQLE inhibitors, NB-598 and Cmpd-4″, and their structurally inactive analogs, NB-598.ia and Cmpd-4″.ia, were profiled in monkeys. While both active SQLE inhibitors resulted in dose-limiting gastrointestinal toxicity, the structurally similar inactive analogs did not. Collectively, our data demonstrate that significant toxicities arise at exposures well below the predicted levels needed for anti-tumor activity. The on-target nature of the toxicities identified is likely to limit the potential therapeutic utility of SQLE inhibition for the treatment of SCLC.


Asunto(s)
Inhibidores Enzimáticos/sangre , Inhibidores Enzimáticos/toxicidad , Escualeno-Monooxigenasa/antagonistas & inhibidores , Escualeno-Monooxigenasa/sangre , Animales , Perros , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Macaca fascicularis , Masculino , Piel/efectos de los fármacos , Piel/enzimología , Piel/patología
6.
Mol Genet Metab ; 128(1-2): 57-61, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133529

RESUMEN

Branched chain amino acid (BCAA) metabolism occurs within the mitochondrial matrix and is comprised of multiple enzymes, some shared, organized into three pathways for the catabolism of leucine, isoleucine, and valine (LEU, ILE, and VAL respectively). Three different acyl-CoA dehydrogenases (ACADs) are active in each catabolic pathway and genetic deficiencies in each have been identified. While characteristic metabolites related to the enzymatic block accumulate in each deficiency, for reasons that are not clear, clinical symptoms are only seen in the context of deficiency of isovaleryl-CoA dehydrogenase (IVDH) in the leucine pathway. Metabolism of fibroblasts derived from patients with mutations in each of the BCAA ACADs were characterized using metabolomics to better understand the flux of BCAA through their respective pathways. Stable isotope labeled LEU, ILE, and VAL in patient and control cell lines revealed that mutations in isobutyryl-CoA dehydrogenase (IBDH in the valine pathway) lead to a significant increase in isobutyrylcarnitine (a surrogate for the enzyme substrate isobutyryl-CoA) leading to metabolism by short-branched chain acyl-CoA dehydrogenase (SBCADH in the isoleucine pathway) and production of the pathway end product propionylcarnitine (a surrogate for propionyl-CoA). Similar cross activity was observed for SBCADH deficient patient cells, leading to a significant increase in propionylcarnitine, presumably by metabolism of 2 methylbutyryl-CoA via IBDH activity. Labeled BCAA studies identified that the majority of the intracellular propionyl-CoA pool in fibroblasts is generated from isoleucine, but heptanoic acid (a surrogate for odd-chain fatty acids) is also efficiently converted to propionate.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Metabolómica , Trastornos Innatos del Ciclo de la Urea/tratamiento farmacológico , Trastornos Innatos del Ciclo de la Urea/metabolismo , Acil-CoA Deshidrogenasa/metabolismo , Línea Celular , Fibroblastos , Humanos , Isoleucina/metabolismo , Leucina/metabolismo , Transducción de Señal , Especificidad por Sustrato , Valina/metabolismo
7.
Am J Hum Genet ; 104(4): 651-664, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929736

RESUMEN

Pheochromocytomas and paragangliomas (PPGLs) provide some of the clearest genetic evidence for the critical role of metabolism in the tumorigenesis process. Approximately 40% of PPGLs are caused by driver germline mutations in 16 known susceptibility genes, and approximately half of these genes encode members of the tricarboxylic acid (TCA) cycle. Taking as a starting point the involvement of the TCA cycle in PPGL development, we aimed to identify unreported mutations that occurred in genes involved in this key metabolic pathway and that could explain the phenotypes of additional individuals who lack mutations in known susceptibility genes. To accomplish this, we applied a targeted sequencing of 37 TCA-cycle-related genes to DNA from 104 PPGL-affected individuals with no mutations in the major known predisposing genes. We also performed omics-based analyses, TCA-related metabolite determination, and 13C5-glutamate labeling assays. We identified five germline variants affecting DLST in eight unrelated individuals (∼7%); all except one were diagnosed with multiple PPGLs. A recurrent variant, c.1121G>A (p.Gly374Glu), found in four of the eight individuals triggered accumulation of 2-hydroxyglutarate, both in tumors and in a heterologous cell-based assay designed to functionally evaluate DLST variants. p.Gly374Glu-DLST tumors exhibited loss of heterozygosity, and their methylation and expression profiles are similar to those of EPAS1-mutated PPGLs; this similarity suggests a link between DLST disruption and pseudohypoxia. Moreover, we found positive DLST immunostaining exclusively in tumors carrying TCA-cycle or EPAS1 mutations. In summary, this study reveals DLST as a PPGL-susceptibility gene and further strengthens the relevance of the TCA cycle in PPGL development.


Asunto(s)
Aciltransferasas/genética , Neoplasias de las Glándulas Suprarrenales/genética , Mutación de Línea Germinal , Paraganglioma/genética , Feocromocitoma/genética , Adulto , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinogénesis , Dominio Catalítico , Ciclo del Ácido Cítrico , Metilación de ADN , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pérdida de Heterocigocidad , Masculino , Persona de Mediana Edad
8.
Nat Commun ; 10(1): 97, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626872

RESUMEN

Squalene epoxidase (SQLE), also known as squalene monooxygenase, catalyzes the stereospecific conversion of squalene to 2,3(S)-oxidosqualene, a key step in cholesterol biosynthesis. SQLE inhibition is targeted for the treatment of hypercholesteremia, cancer, and fungal infections. However, lack of structure-function understanding has hindered further progression of its inhibitors. We have determined the first three-dimensional high-resolution crystal structures of human SQLE catalytic domain with small molecule inhibitors (2.3 Å and 2.5 Å). Comparison with its unliganded state (3.0 Å) reveals conformational rearrangements upon inhibitor binding, thus allowing deeper interpretation of known structure-activity relationships. We use the human SQLE structure to further understand the specificity of terbinafine, an approved agent targeting fungal SQLE, and to provide the structural insights into terbinafine-resistant mutants encountered in the clinic. Collectively, these findings elucidate the structural basis for the specificity of the epoxidation reaction catalyzed by SQLE and enable further rational development of next-generation inhibitors.


Asunto(s)
Escualeno-Monooxigenasa/química , Escualeno-Monooxigenasa/metabolismo , Animales , Dominio Catalítico , Línea Celular , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Insectos , Conformación Proteica , Dominios Proteicos , Escualeno/metabolismo , Escualeno-Monooxigenasa/antagonistas & inhibidores
9.
Nat Commun ; 10(1): 96, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626880

RESUMEN

Aberrant metabolism of cancer cells is well appreciated, but the identification of cancer subsets with specific metabolic vulnerabilities remains challenging. We conducted a chemical biology screen and identified a subset of neuroendocrine tumors displaying a striking pattern of sensitivity to inhibition of the cholesterol biosynthetic pathway enzyme squalene epoxidase (SQLE). Using a variety of orthogonal approaches, we demonstrate that sensitivity to SQLE inhibition results not from cholesterol biosynthesis pathway inhibition, but rather surprisingly from the specific and toxic accumulation of the SQLE substrate, squalene. These findings highlight SQLE as a potential therapeutic target in a subset of neuroendocrine tumors, particularly small cell lung cancers.


Asunto(s)
Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Escualeno-Monooxigenasa/antagonistas & inhibidores , Escualeno-Monooxigenasa/metabolismo , Antineoplásicos/química , Línea Celular Tumoral , Colesterol/biosíntesis , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos
10.
Nat Med ; 24(9): 1482, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29895835

RESUMEN

In the version of this article initially published, the "[13C2]α-ketoglutarate" label on Fig. 1g is incorrect. It should be "[13C5]α-ketoglutarate". Additionally, in Fig. 3b, the "AAV-GFP" group is missing a notation for significance, and in Fig. 3c, the "AAV-GLS2-sh" group is missing a notation for significance. There should be a double asterisk notating significance in both panels. Finally, in the Fig. 4g legend, "[13C6]UDP-glucose" should be "[13C3]UDP-glucose", and in the Fig. 4h legend, "[13C6]hexose" should be "[13C3]hexose". The errors have been corrected in the HTML and PDF versions of this article.

11.
Nat Med ; 24(4): 518-524, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29578539

RESUMEN

Glucagon levels increase under homeostatic, fasting conditions, promoting the release of glucose from the liver by accelerating the breakdown of glycogen (also known as glycogenolysis). Glucagon also enhances gluconeogenic flux, including from an increase in the hepatic consumption of amino acids. In type 2 diabetes, dysregulated glucagon signaling contributes to the elevated hepatic glucose output and fasting hyperglycemia that occur in this condition. Yet, the mechanism by which glucagon stimulates gluconeogenesis remains incompletely understood. Contrary to the prevailing belief that glucagon acts primarily on cytoplasmic and nuclear targets, we find glucagon-dependent stimulation of mitochondrial anaplerotic flux from glutamine that increases the contribution of this amino acid to the carbons of glucose generated during gluconeogenesis. This enhanced glucose production is dependent on protein kinase A (PKA) and is associated with glucagon-stimulated calcium release from the endoplasmic reticulum, activation of mitochondrial α-ketoglutarate dehydrogenase, and increased glutaminolysis. Mice with reduced levels of hepatic glutaminase 2 (GLS2), the enzyme that catalyzes the first step in glutamine metabolism, show lower glucagon-stimulated glutamine-to-glucose flux in vivo, and GLS2 knockout results in higher fasting plasma glucagon and glutamine levels with lower fasting blood glucose levels in insulin-resistant conditions. As found in genome-wide association studies (GWAS), human genetic variation in the region of GLS2 is associated with higher fasting plasma glucose; here we show in human cryopreserved primary hepatocytes in vitro that these natural gain-of-function missense mutations in GLS2 result in higher glutaminolysis and glucose production. These data emphasize the importance of gluconeogenesis from glutamine, particularly in pathological states of increased glucagon signaling, while suggesting a possible new therapeutic avenue to treat hyperglycemia.


Asunto(s)
Glutaminasa/metabolismo , Hiperglucemia/enzimología , Hígado/enzimología , Animales , Células Cultivadas , Criopreservación , Glucagón/metabolismo , Glutamina/metabolismo , Hepatocitos/metabolismo , Humanos , Cinética , Análisis de Flujos Metabólicos , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Oncotarget ; 8(40): 67904-67917, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28978083

RESUMEN

Inflammatory breast cancer (IBC) is the most lethal and aggressive type of breast cancer, with a strong proclivity to metastasize, and IBC-specific targeted therapies have not yet been developed. Epidermal growth factor receptor (EGFR) has emerged as an important therapeutic target in IBC. However, the mechanism behind the therapeutic effect of EGFR targeted therapy is not well defined. Here, we report that EGFR regulates the IBC cell population that expresses cancer stem-like cell (CSC) markers through COX-2, a key mediator of inflammation whose expression correlates with worse outcome in IBC. The COX-2 pathway promoted IBC cell migration and invasion and the CSC marker-bearing population in vitro, and the inhibition of this pathway reduced IBC tumor growth in vivo. Mechanistically, we identified Nodal, a member of the TGFß superfamily, as a potential driver of COX-2-regulated invasive capacity and the CSC phenotype of IBC cells. Our data indicate that the EGFR pathway regulates the expression of COX-2, which in turn regulates the expression of Nodal and the activation of Nodal signaling. Together, our findings demonstrate a novel connection between the EGFR/COX-2/Nodal signaling axis and CSC regulation in IBC, which has potential implications for new combination approaches with EGFR targeted therapy for patients with IBC.

14.
Nature ; 547(7661): 109-113, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28658205

RESUMEN

Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.


Asunto(s)
Adenosilmetionina Descarboxilasa/metabolismo , Complejos Multiproteicos/metabolismo , Poliaminas/metabolismo , Neoplasias de la Próstata/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenosilmetionina Descarboxilasa/inmunología , Animales , Proliferación Celular , Activación Enzimática , Everolimus/uso terapéutico , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Metabolómica , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Estabilidad Proteica , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
15.
Cell Rep ; 17(3): 876-890, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27732861

RESUMEN

Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA) cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention.


Asunto(s)
Ácido Aspártico/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Neoplasias/metabolismo , Animales , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , Humanos , ARN Interferente Pequeño/metabolismo
16.
Anal Biochem ; 508: 129-37, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27343766

RESUMEN

Metabolite stable isotope tracing is a powerful bioanalytical strategy that has the potential to unravel phenotypic markers of early pharmaceutical efficacy by monitoring enzymatic incorporation of carbon-13 atoms into targeted pathways over time. The practice of probing biological systems with carbon-13 labeled molecules using broad MS-based screens has been utilized for many years in academic laboratories but has had limited application in the pharmaceutical R&D environment. The goal of this work was to establish a LCMS analytical workflow that was capable of monitoring carbon-13 isotope changes in glycolysis, the TCA and urea cycles, and non-essential amino acid metabolism. This work applies a standardized protein precipitation with 80% cold methanol and two distinct reverse-phase ion-pair liquid chromatography methods coupled to either a positive- or negative-ion mode high-resolution accurate mass spectrometry screening method. The data herein combines thousands of single-point peak integrations into a novel metabolite network map as a visualization aid to probe and monitor stable isotope incorporation in murine hepatocytes using uniformly labeled (13)C6 glucose, (13)C3 lactate, and (13)C5 glutamine. This work also demonstrates that nitrogen metabolism may have a large influence on the TCA cycle and gluconeogenic carbon fluxes in hepatocyte cell culture.


Asunto(s)
Isótopos de Carbono/química , Cromatografía Liquida , Hepatocitos/metabolismo , Espectrometría de Masas , Sondas Moleculares/química , Animales , Isótopos de Carbono/análisis , Células Cultivadas , Glucólisis , Metaboloma/fisiología , Ratas
17.
Sci Rep ; 5: 17391, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26620127

RESUMEN

Citrate is a key regulatory metabolic intermediate as it facilitates the integration of the glycolysis and lipid synthesis pathways. Inhibition of hepatic extracellular citrate uptake, by blocking the sodium-coupled citrate transporter (NaCT or SLC13A5), has been suggested as a potential therapeutic approach to treat metabolic disorders. NaCT transports citrate from the blood into the cell coupled to the transport of sodium ions. The studies herein report the identification and characterization of a novel small dicarboxylate molecule (compound 2) capable of selectively and potently inhibiting citrate transport through NaCT, both in vitro and in vivo. Binding and transport experiments indicate that 2 specifically binds NaCT in a competitive and stereosensitive manner, and is recognized as a substrate for transport by NaCT. The favorable pharmacokinetic properties of 2 permitted in vivo experiments to evaluate the effect of inhibiting hepatic citrate uptake on metabolic endpoints.


Asunto(s)
Ácido Cítrico/metabolismo , Simportadores/antagonistas & inhibidores , Células HEK293 , Humanos , Transporte Iónico/efectos de los fármacos , Simportadores/genética , Simportadores/metabolismo
18.
Bioanalysis ; 7(20): 2649-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26495807

RESUMEN

This article highlights recent advancements in the quantitative measurement of drug distribution by MS imaging (MSI). Quantitation by MSI was recently considering the primary disadvantage of MSI approaches particularly when compared with widely used autoradiography techniques. These approaches show significant progress in the area of quantitative MSI and have been used in numerous drug and metabolite distribution measurements. As quantitative limitations are overcome, the use of MSI in drug development should increase significantly providing key insights into both tissue-target validation as well as identifying off tissue-target issues with drug delivery.


Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Autorradiografía , Benzodiazepinas/análisis , Benzodiazepinas/metabolismo , Hígado/metabolismo , Hígado/patología , Olanzapina , Preparaciones Farmacéuticas/análisis , Ratas , Distribución Tisular , Imagen de Cuerpo Entero
19.
PLoS One ; 8(4): e61379, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658609

RESUMEN

Biomarker discovery using mass spectrometry (MS) has recently seen a significant increase in applications, mainly driven by the rapidly advancing field of metabolomics. Instrumental and data handling advancements have allowed for untargeted metabolite analyses which simultaneously interrogate multiple biochemical pathways to elucidate disease phenotypes and therapeutic mechanisms. Although most MS-based metabolomic approaches are coupled with liquid chromatography, a few recently published studies used matrix-assisted laser desorption (MALDI), allowing for rapid and direct sample analysis with minimal sample preparation. We and others have reported that prostaglandin E3 (PGE3), derived from COX-2 metabolism of the omega-3 fatty acid eicosapentaenoic acid (EPA), inhibited the proliferation of human lung, colon and pancreatic cancer cells. However, how PGE3 metabolism is regulated in cancer cells, particularly human non-small cell lung cancer (NSCLC) cells, is not fully understood. Here, we successfully used MALDI to identify differences in lipid metabolism between two human non-small-cell lung cancer (NSCLC) cell lines, A549 and H596, which could contribute to their differential response to EPA treatment. Analysis by MALDI-MS showed that the level of EPA incorporated into phospholipids in H596 cells was 4-fold higher than A549 cells. Intriguingly, H596 cells produced much less PGE3 than A549 cells even though the expression of COX-2 was similar in these two cell lines. This appears to be due to the relatively lower expression of cytosolic phospholipase A2 (cPLA2) in H596 cells than that of A549 cells. Additionally, the MALDI-MS approach was successfully used on tumor tissue extracts from a K-ras transgenic mouse model of lung cancer to enhance our understanding of the mechanism of action of EPA in the in vivo model. These results highlight the utility of combining a metabolomics workflow with MALDI-MS to identify the biomarkers that may regulate the metabolism of omega-3 fatty acids and ultimately affect their therapeutic potentials.


Asunto(s)
Alprostadil/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ciclooxigenasa 2/metabolismo , Ácido Eicosapentaenoico/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Metabolómica , Alprostadil/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Ciclooxigenasa 2/genética , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Transgénicos , Especificidad de Órganos , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
Anal Chem ; 85(2): 1090-6, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23214468

RESUMEN

Generating analyte-specific distribution maps of compounds in a tissue sample by matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging (MSI) has become a useful tool in numerous areas across the biological sciences. Direct analysis of the tissue sample provides MS images of an analyte's distribution with minimal sample pretreatment. The technique, however, suffers from the inability to account for tissue-specific variations in ion signal. The variation in the makeup of different tissue types can result in significant differences in analyte extraction, cocrystallization, and ionization across a sample. In this study, a deuterated internal standard was used to account for these signal variations. Initial experiments were performed using pure standards and optimal cutting temperature compound (OCT) to generate known areas of ion suppression. By monitoring the analyte-to-internal-standard ratio, differences in ion signal were taken into account, resulting in images that better represented the analyte concentration. These experiments were then replicated using multiple tissue types in which the analyte's MS signal was monitored. In certain tissues, including liver and kidney, the analyte signal was attenuated by up to 90%; however, when the analyte-to-internal-standard ratio was monitored, these differences were taken into account. These experiments further exemplify the need for an internal standard in the MSI workflow.


Asunto(s)
Acetilcarnitina/análisis , Animales , Encéfalo , Estándares de Referencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Porcinos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...