Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Transpl Immunol ; 83: 102011, 2024 Apr.
Article En | MEDLINE | ID: mdl-38403197

Although there are different data supporting benefits of HLA matching in kidney transplantation, its role in heart transplantation is still unclear. HLA mismatch (MM) between donor and recipient can lead to the development of donor-specific antibodies (DSA) which produces negative events on the outcome of heart transplantation. Moreover, DSAs are involved in the development of antibody-mediated rejection (AMR) and are associated with an increase in cardiac allograft vasculopathy (CAV). In this study it is analyzed retrospectively the influence of HLA matching and anti-HLA antibodies on overall survival, AMR and CAV in heart transplantation. For this retrospective study are recruited heart transplanted patients at the Cardiac Transplantation Centre of Naples between 2000 and 2019. Among the 155 heart transplant patients, the mean number of HLA-A, B, -DR MM (0 to 6) between donor and recipient was 4.5 ± 1.1. The results show a negative association between MM HLA-DR and survival (p = 0.01). Comparison of patients with 0-1 MM at each locus to all others with 2 MM, for both HLA class I and class II, has not showed significant differences in the development of CAV. Our analysis detected DSA in 38.1% of patients. The production of de novo DSA reveals that there is not an influence on survival (p = 0.72) and/or AMR (p = 0.39). Instead, there is an association between the production of DSA class II and the probability of CAV development (p = 0.03). Mean fluorescence intensity (MFI) values were significantly higher in CAV-positive patients that CAV-negative patients (p = 0.02). Prospective studies are needed to evaluate HLA class II matching as an additional parameter for heart allocation, especially considering the increment of waiting list time.


Antibodies , Graft Rejection , Humans , Retrospective Studies , Tissue Donors , Allografts , HLA Antigens , Isoantibodies
3.
Regen Biomater ; 8(3): rbaa052, 2021 Jun.
Article En | MEDLINE | ID: mdl-34211725

Gelatin hydrogels by microbial-transglutaminase crosslinking are being increasingly exploited for tissue engineering, and proved high potential in bone regeneration. This study aimed to evaluate, for the first time, the combination of enzymatically crosslinked gelatin with hyaluronan and the newly developed biotechnological chondroitin in enhancing osteogenic potential. Gelatin enzymatic crosslinking was carried out in the presence of hyaluronan or of a hyaluronan-chondroitin mixture, obtaining semi-interpenetrating gels. The latter proved lower swelling extent and improved stiffness compared to the gelatin matrix alone, whilst maintaining high stability. The heteropolysaccharides were retained for 30 days in the hydrogels, thus influencing cell response over this period. To evaluate the effect of hydrogel composition on bone regeneration, materials were seeded with human dental pulp stem cells and osteogenic differentiation was assessed. The expression of osteocalcin (OC) and osteopontin (OPN), both at gene and protein level, was evaluated at 7, 15 and 30 days of culture. Scanning electron microscopy (SEM) and two-photon microscope observations were performed to assess bone-like extracellular matrix (ECM) deposition and to observe the cell penetration depth. In the presence of the heteropolysaccharides, OC and OPN expression was upregulated and a higher degree of calcified matrix formation was observed. Combination with hyaluronan and chondroitin improved both the biophysical properties and the biological response of enzymatically crosslinked gelatin, fastening bone deposition.

4.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article En | MEDLINE | ID: mdl-34209306

Diabetic foot ulcer (DFU) is a diabetes complication which greatly impacts the patient's quality of life, often leading to amputation of the affected limb unless there is a timely and adequate management of the patient. DFUs have a high economic impact for the national health system. Data have indeed shown that DFUs are a major cause of hospitalization for patients with diabetes. Based on that, DFUs represent a very important challenge for the national health system. Especially in developed countries diabetic patients are increasing at a very high rate and as expected, also the incidence of DFUs is increasing due to longevity of diabetic patients in the western population. Herein, the surgical approach focused on the targeted use of the acellular dermal matrix has been integrated with biochemical and morphological/histological analyses to obtain evidence-based information on the mechanisms underlying tissue regeneration. In this research report, the clinical results indicated decreased postoperative wound infection levels and a short healing time, with a sound regeneration of tissues. Here we demonstrate that the key biomarkers of wound healing process are activated at gene expression level and also synthesis of collagen I, collagen III and elastin is prompted and modulated within the 28-day period of observation. These analyses were run on five patients treated with Integra® sheet and five treated with the injectable matrix Integra® Flowable, for cavitary lesions. In fact, clinical evaluation of improved healing was, for the first time, supported by biochemical and histological analyses. For these reasons, the present work opens a new scenario in DFUs treatment and follow-up, laying the foundation for a tailored protocol towards complete healing in severe pathological conditions.


Acellular Dermis , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Foot , Wound Healing , Aged , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/therapy , Diabetic Foot/metabolism , Diabetic Foot/pathology , Diabetic Foot/therapy , Female , Humans , Male , Middle Aged
5.
Lasers Med Sci ; 36(5): 1047-1057, 2021 Jul.
Article En | MEDLINE | ID: mdl-32979135

During the last years, several attempts have been accomplished to improve the wound healing. Device application aimed at enhancing skin ability to reconstruct its damaged sites through a proper dermal regenerative process. In particular, Q-switched Nd-YAG laser (Medlite C6 laser, Conbio, USA) applied with a fluence of 8 J/cm2, a pulse width of 5 ns, and a spot size of 4 mm exerts a photo-mechanical action that improve skin repair. Besides, hyaluronan hybrid cooperative complexes (HCC) widely exploited in dermoesthetic applications proved specific actions on keratinocytes and fibroblasts monolayer repair. We evaluated this specific laser treatment in vitro on a wound healing model based on human keratinocytes (HaCaT) alone and in combination with HCC. In addition, we evaluated key biomarkers of dermal repair. Scratched HaCaT monolayers were treated with laser and successively with HA-based formulations (HHA and HCC). For each treatment and the control samples, at least 3 different wells were analyzed. Wound closure was quantified, measuring five view filed for each well at increasing incubation time, exploiting time lapse videomicroscopy and image analysis, permitting to compare the different healing rate of treatments respect to control. By real-time PCR and western blotting, we evaluated biomarkers of wound regeneration, such as integrins, aquaporin three (AQP3), and proinflammatory cytokines. The ANOVA test was used to assess statistical significance of the results obtained. Laser-treated cells achieved wound closure in about 37 h, faster than the control, while when coupled to HCC, the complete reparation was obtained in 24 h. Integrin αV was upregulated by treatments, with in particular about four-fold increase respect to the control when HCC + laser was used. In addition, integrin ß3 was upregulated by all treatments especially with the combination of laser and HCC proved more efficient than others (~ 14-folds). A slighter but significant increase of AQP3 gene expression of 61% was found for laser treatment while the latter combined with HCC determined an upregulation of 72%. By coupling laser treatment and HCC, further healing improvement and consistent biomarker modulation was observed. Our results may support clinical implementation of new dermatology protocols conjugating laser treatments with topical or injective HA formulations as a valid tool in treatments to repair scars or other skin defects.


Hyaluronic Acid/pharmacology , Keratinocytes/drug effects , Keratinocytes/radiation effects , Lasers, Solid-State/therapeutic use , Wound Healing/drug effects , Biomarkers/metabolism , Gels , Humans , Keratinocytes/cytology , Keratinocytes/metabolism
6.
J Toxicol ; 2020: 7915795, 2020.
Article En | MEDLINE | ID: mdl-32952552

Pethoxamid is a widespread herbicidal product, presenting itself as an extremely flexible active substance and with a high potential for use as an herbicide for preemergence. The emergence of multiple resistance in crops has been addressed using combinations of preemergence and postemergence herbicides in the same seeding-harvest cycle. A winning combination of pethoxamid and glyphosate mainly affected the acidobacteria population. Glyphosate scientific literature has demonstrated an observational link between herbicide exposure and liver disease in human subjects. Identifying and ranking the risk to the public that pethoxamid could exert on target organs has not been evaluated so far. Due to similarities to glyphosate, we did look at the effect of pethoxamid on impaired liver cells HepG2, using a nonalcoholic fatty liver disease (NAFLD) cell model in vitro. Pethoxamid was cytotoxic starting at 1 ppm. Fatty acid accumulation (FA) was enhanced while low doses of pethoxamid slightly decreased LDH protein expression compared to FA-treated HepG2. The same trend was observed for cytochrome c. Based on our data, we can argue that NAFLD hepatic cells react to pethoxamid trying detoxifying strategies, ready to undergo cell death to avoid further degeneration. Downregulation of cytochrome can lead to the hypothesis that pethoxamid should not induce herbicide resistance.

8.
Molecules ; 25(3)2020 Jan 21.
Article En | MEDLINE | ID: mdl-31972968

BACKGROUND: It has been shown that many plant- or microbial-derived oligos and polysaccharides may prompt tissue repair. Among the different extracts that have been studied, the aqueous one of Triticum vulgare (TVE) that was obtained from a whole germinated plant has been proven to have different biological properties that are useful in the process of wound healing. Nevertheless, with the long tradition of its use in pharmaceutical cream and ointments, especially in Italy, a new protocol was recently proposed (and patented) to improve the extraction process. METHODS: In a simplified in vitro model, human keratinocyte monolayers were scratched and used to run time lapse experiments by using time lapse video microscopy (TLVM) to quantify reparation rate while considering a dose-response effect. Contemporarily, the molecular mechanisms that are involved in tissue repair were studied. In fact, key biomarkers that are involved in remodeling, such as MMP-2 and MMP-9, and in matrix structure assembly, such as collagen I, elastin, integrin αV and aquaporin 3, were evaluated with gene expression analyses (RT-PCR) and protein quantification in western blotting. RESULTS: All TVE doses tested on the HaCat-supported cell proliferation. TVE also prompted cell migration in respect to the control, correctly modulating the timing of metalloproteases expression toward a consistent and well-assessed matrix remodeling. Furthermore, TVE treatments upregulated and positively modulated the expression of the analyzed biomarkers, thus resulting in a better remodeling of dermal tissue during healing. CONCLUSIONS: The in vitro results on the beneficial effects of TVE on tissue elasticity and regeneration may support a better understanding of the action mechanism of TVE as active principles in pharmaceutical preparation in wound treatment.


Keratinocytes/pathology , Plant Extracts/pharmacology , Triticum/chemistry , Wound Healing/drug effects , Aquaporin 3/metabolism , Biomarkers/metabolism , Cell Survival/drug effects , Collagen Type I/metabolism , Elastin/metabolism , Gene Expression Regulation/drug effects , Humans , Integrin alphaV/metabolism , Keratinocytes/drug effects , Molecular Weight , Time-Lapse Imaging , Transcription, Genetic/drug effects , Viscosity , Wound Healing/genetics
9.
Antioxidants (Basel) ; 10(1)2020 Dec 31.
Article En | MEDLINE | ID: mdl-33396456

Several plant extracts are acquiring increasing value because of their antioxidant activity and hypolipidemic properties. Among them, great interest has been recently paid to açai fruit as a functional food. The aim of this study was to test the ability of açai extract in reducing oxidative stress and modulating lipid metabolism in vitro using different cell models and different types of stress. In fact, lipid peroxidation as evaluated in a HepG2 model was reduced five-fold when using 0.25 µg/mL of extract, and it was further reduced (20-fold) with the concentration increase up to 2.5 µg/mL. With the non alcoholic fatty liver disease (NAFLD)in vitro model, all concentrations tested showed at least a two-fold reduced fat deposit. In addition, primary adipocytes challenged with TNF-α under hypoxic conditions to mimic the persistent subcutaneous fat, treated with açai extract showed an approximately 40% reduction of fat deposit. Overall, our results show that açai is able to counteract oxidative states in all the cell models analysed and to prevent the accumulation of lipid droplets. No toxic effects and high stability overtime were highlighted at the concentrations tested. Therefore, açai can be considered a suitable support in the prevention of different alterations of lipid and oxidative metabolism responsible for fat deposition and metabolic pathological conditions.

10.
Int J Biol Macromol ; 144: 94-101, 2020 Feb 01.
Article En | MEDLINE | ID: mdl-31794831

Hyaluronan (HA)-based hydrogels obtained by crosslinking the biopolymer via ether bonds are widely used in clinical practice. There is interest in improving the design of these gels to match specific properties. Here, the possibility to tune HA-hydrogel behavior by adjusting the molecular weight distribution of the biopolymer undergoing crosslinking was investigated. Three HA samples (500, 1100 and 1600 kDa) underwent reaction with 1,4-butandioldiglycidyl-ether(BDDE) under reported conditions and the crosslinked products were characterized for chemical modification extent, swelling, rheological behavior, cohesivity, sensitivity to enzymatic degradation and effect on Human Dermal Fibroblasts (HDF). HA hydrolysis, under the highly alkaline crosslinking conditions, was also studied for the first time. The main achievements are that 1) varying HA chain length affects hydrogel behavior less than expected, due to the de-polymerization occurring alongside crosslinking, that reduces the differences in sample size 2) when differences in chain length persist notwithstanding hydrolysis, lowering HA size is a means to prepare more concentrated formulations, expected to exhibit longer duration and better cohesivity in vivo, while retaining a certain rigidity, preserving biocompatibility and slightly influencing HDF behavior in relation to CollagenI production. The study shed light on aspects concerning BDDE-HA gel manufacturing and contributed to the improvement of their design.


Biocompatible Materials/chemistry , Biopolymers/chemistry , Cross-Linking Reagents/chemistry , Ether/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Biocompatible Materials/pharmacology , Biophysical Phenomena , Biopolymers/pharmacology , Cell Survival/drug effects , Fibroblasts/drug effects , Humans , Hyaluronoglucosaminidase/metabolism , Materials Testing , Molecular Weight , Polymerization , Rheology , Tissue Engineering
11.
Int J Mol Sci ; 20(19)2019 Sep 24.
Article En | MEDLINE | ID: mdl-31554177

The effectiveness of hyaluronic acid (HA), also called as hyaluronan, and its formulations on tissue regeneration and epidermal disease is well-documented. High-molecular-weight hyaluronan (HHA) is an efficient space filler that maintains hydration, serves as a substrate for proteoglycan assembly, and is involved in wound healing. Recently, an innovative hybrid cooperative complex (HCC) of high- and low-molecular-weight hyaluronan was developed that is effective in wound healing and bioremodeling. The HCC proposed here consisted of a new formulation and contained 1.6 ± 0.1 kDa HHA and 250 ± 7 kDa LHA (low molecular weight hyaluronic acid). We investigated the performance of this HCC in a novel in vitro HaCaT (immortalized human keratinocytes)/HDF (human dermal fibroblast) co-culture model to assess its ability to repair skin tissue lesions. Compared to linear HA samples, HCC reduced the biomarkers of inflammation (Transforming Growth Factor-ß (TGF-ß), Tumor Necrosis Factor receptor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8)), and accelerated the healing process. These data were confirmed by the modulation of metalloproteases (MMPs) and elastin, and were compatible with a prospectively reduced risk of scar formation. We also examined the expression of defensin-2, an antimicrobial peptide, in the presence of hyaluronan, showing a higher expression in the HCC-treated samples and suggesting a potential increase in antibacterial and immunomodulatory functions. Based on these in vitro data, the presence of HCC in creams or dressings would be expected to enhance the resolution of inflammation and accelerate the skin wound healing process.


Biocompatible Materials/chemistry , Hyaluronic Acid/chemistry , Macromolecular Substances/chemistry , Wound Healing , Biomarkers , Cell Line , Coculture Techniques , Humans , Hydrodynamics , Materials Testing , Rheology , Spectrum Analysis
12.
Biomed Res Int ; 2019: 4328219, 2019.
Article En | MEDLINE | ID: mdl-31179322

High molecular weight hyaluronan (H-HA) has a pivotal role in the maintenance of normal functions of synovial fluid and structure of the articular joint, but it has been shown that its concentration is reduced in patients affected by degenerative cartilage diseases, such as osteoarthritis (OA). The aim of this study was to investigate the anti-inflammatory effects and properties of hybrid cooperative complexes based on high and low molecular weight hyaluronan (HCC) compared to H-HA on human primary cells derived by pathological joints. In addition, the rheological behavior of HCC was evaluated in order to define their potential as viscosupplement gel in degenerated joints. The experiments were performed using an in vitro model of OA based on human chondrocytes and synoviocytes isolated from degenerated joints of patients hospitalized for surgical replacement. In order to assess the anti-inflammatory effects of HCC, we evaluated NF-kB, COMP-2, IL-6, and IL-8 as specific markers at the transcriptional and/or protein level. Moreover, the proliferative properties of HCC were assessed using time lapse video microscopy. We showed that chondrocytes and synoviocytes clearly presented an altered cytokine profile compatible with a severe ongoing inflammation status. H-HA and, above all, HCC significantly reduced levels of the specific biomarkers evaluated and improved cartilage healing. The rheological profile indicated HCC suitability for intra-articular injection in joint diseases. HCC viscoelastic properties and the protective/anti-inflammatory effect on human chondrocytes and synoviocytes suggest the novel HCC-based gels as a valid support for OA management.


Cell Proliferation/drug effects , Chondrocytes/metabolism , Hyaluronic Acid , Models, Biological , Osteoarthritis/drug therapy , Synoviocytes/metabolism , Chondrocytes/pathology , Gels , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Molecular Weight , Osteoarthritis/metabolism , Osteoarthritis/pathology , Synoviocytes/pathology
13.
PLoS One ; 14(6): e0218475, 2019.
Article En | MEDLINE | ID: mdl-31237905

Interstitial cystitis and/or bladder pain syndrome (IC/BPS) are characterized by discomfort, abdominal pain, and pelvic pain, and they are often associated with chronic diseases. Pathological conditions related to IC/BPS can occur due to a defect in the integrity of the bladder lining. This defect has been ascribed to damage to the glycosaminoglycan (GAG) layer of the urinary epithelium. In addition, the incipient cascade of inflammation events might prompt extracellular matrix degradation. Several medical devices based on GAG instillation were proposed to re-establish epithelial integrity by GAGs binding to proteoglycans or interacting with structural urothelium. However, to date, only in vitro studies have investigated the GAG, hyaluronic acid (HA). In the present study, TNFα treatment was used to mimic IC/BPS-induced damage in bladder cells in an in vitro model. Highly purified fermentative HA and pharmaceutical grade bovine chondroitin sulfate (CSb), alone or in combination, were evaluated for the ability to counteract bladder cell damage. We evaluated NF-κB with western blots, and we analyzed interleukin 6 and 8 expression at the transcriptional and protein levels with quantitative RT-PCR, western blotting, and ELISA. We also evaluated the expression of an antibacterial peptide, human ß-defensin-2. We confirmed our results in a 3D bladder epithelium model. Our results demonstrated that inflammatory status was reduced in the presence of HA, CSb, and the combination of both (HA/CSb 1.6%/2% w/v). This result suggested that these GAGs might be suitable for treating IC/BPS. All the assayed biomarkers showed that HA/CSb treatment modulated cells towards a more physiological status. Finally, we compared two commercial products suggested for the IC/BPS treatments and found that the product with more Ca++, showed enhanced anti-inflammatory activity and provided superior mucoadhesivity.


Chondroitin Sulfates/therapeutic use , Hyaluronic Acid/therapeutic use , Inflammation/drug therapy , Urinary Bladder/pathology , Animals , Cattle , Cell Line , Gene Expression Regulation , Glycosaminoglycans/metabolism , Humans , Hydrodynamics , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Models, Biological , NF-kappa B/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Zonula Occludens-1 Protein/metabolism
14.
PLoS One ; 14(6): e0218287, 2019.
Article En | MEDLINE | ID: mdl-31185059

Biophysical and biochemical data on hyaluronan (HA)-based dermal fillers strongly support their optimal use and design to meet specific requisites. Here, four commercially available (in Europe) HA "volumetric" fillers, among the most used in the clinical practice, have been characterized in vitro. Analyses revealed the highest amounts of water-soluble HA reported so far and provided hydrodynamic data for these soluble polymeric fractions. Volumetric gels exhibit a wide range of rigidity with most of them showing G' values around 200-300Pa. They greatly differ in cohesivity. 1mL of gel hydrates up to 2.4-3.2mL. The products completely solubilize due to Bovine Testicular Hyaluronidase (BTH)'s action, thus predicting in vivo complete resorption. For the first time, filler degradation due to reactive oxygen species (ROS) was studied by rheological measurements and a rank in stability was established. Studies using Human Dermal Fibroblasts (HDF) indicated a positive biological response to the HA networks. Further, gel capacity to prompt collagen I, elastin and aquaporin3 synthesis was demonstrated, thus suggesting a positive effect on skin elasticity and hydration, besides the physical volumetric action. The findings are the first wide assessment of features for the volumetric class of HA-fillers and include first data on their resistance to degradation by ROS and biological effects on HDF. The study represents a valuable contribution to the understanding of HA-fillers, useful to optimize their use and manufacture.


Collagen Type I/metabolism , Dermal Fillers , Fibroblasts/metabolism , Hyaluronic Acid , Hydrogels , Materials Testing , Cell Line , Dermal Fillers/chemistry , Dermal Fillers/pharmacology , Fibroblasts/cytology , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Viscosity
15.
Biomed Res Int ; 2018: 8481243, 2018.
Article En | MEDLINE | ID: mdl-30046611

Ultraviolet (UV) radiations are responsible for skin photoaging inducing alteration of the molecular and cellular pathways resulting in dryness and reduction of skin elasticity. In this study, we investigated, in vitro, the antiaging and antioxidant effects of hyaluronan formulations based hydrogel. Skinkò E, an intradermic formulation composed of hyaluronic acid (HA), minerals, amino acids, and vitamins, was compared with the sole HA of the same size. For this purpose, HaCaT cells were subjected to UV-A radiations and H2O2 exposure and then treated with growth medium (CTR) combined with M-HA or Skinkò E to evaluate their protective ability against stressful conditions. Cells reparation was evaluated using a scratch in vitro model and Time-Lapse Video Microscopy. A significant protective effect for Skinkò E was shown with respect to M-HA. In addition, Skinkò E increased cell reparation. Therefore, NF-kB, SOD-2, and HO-1 were significantly reduced at the transcriptional and protein level. Interestingly, γ-H2AX and protein damage assay confirmed the protection by hyaluronans tested against oxidative stress. G6pdΔ ES cell line, highly susceptible to oxidative stress, was used as a further cellular model to assess the antioxidant effect of Skinkò E. Western blotting analyses showed that the treatment with this new formulation exerts marked antioxidant action in cells exposed to UV-A and H2O2. Thus, the protective and reparative properties of Skinkò E make it an interesting tool to treat skin aging.


Amino Acids/pharmacology , Antioxidants/pharmacology , Hyaluronic Acid/pharmacology , Oxidative Stress , Ultraviolet Rays/adverse effects , Vitamins/pharmacology , Humans , Hydrogen Peroxide , Minerals , Skin Aging
16.
Lipids Health Dis ; 17(1): 24, 2018 Feb 05.
Article En | MEDLINE | ID: mdl-29402273

BACKGROUND: Steatosis is a chronic liver disease that depends on the accumulation of intracellular fatty acids. Currently, no drug treatment has been licensed for steatosis; thus, only nutritional guidelines are indicated to reduce its progression. The aim of this study is to combine different nutraceutical compounds in order to evaluate their synergistic effects on a steatosis in vitro model compared to their separate use. In particular, three different formulations based on silymarin, curcumin, vitamin E, docosahexaenoic acid (DHA), choline, and phosphatidylcholine were assayed. METHODS: Human hepatocellular carcinoma cells (HepG2 cell line) were treated with a mixture of fatty acids in order to induce an in vitro model of steatosic cells, and then the amount of intracellular fat was evaluated by Oil Red O staining. The peroxisome proliferator-activated receptors α and γ (PPARα and γ) expression, closely correlated to lipid metabolism, was evaluated. The efficiency of these receptors was evaluated through the study of LPL mRNA expression, a marker involved in the lipolysis mechanism. Superoxide dismutase (SOD-2) and malondialdehydes (MDA) in lipid peroxidation were assayed as specific biomarkers of oxidative stress. In addition, experiments were performed using human liver cells stressed to obtain a steatosis model. In particular, the content of the intracellular fat was assayed using Oil Red O staining, the activation of PPARα and γ was evaluated through western blotting analyses, and the LPL mRNA expression level was analyzed through qRT-PCR. RESULTS: All formulations proved effective on lipid content reduction of about 35%. The oxidative stress damage was reduced by all the substances separately and even more efficiently by the same in formulation (i.e. Formulation 1 and Formulation 3, which reduced the SOD-2 expression and induced the PPARs activation). Lipid peroxidation, was reduced about 2 fold by foormulation2 and up to 5 fold by the others compared to the cells pretreated with H2O2.Formulation 1, was more effective on PPARγ expression (2.5 fold increase) respect to the other compounds on FA treated hepathocytes. Beside, LPL was activated also by Formulation 3 and resulted in a 5 to 9 fold-increase respect to FA treated control. CONCLUSIONS: Our results proved that the formulations tested could be considered suitable support to face steatosis disease beside the mandatory dietetic regimen.


Dietary Supplements , Drug Synergism , Fatty Liver/diet therapy , Fatty Liver/drug therapy , Choline/administration & dosage , Curcumin/administration & dosage , Docosahexaenoic Acids/administration & dosage , Drug Combinations , Drug Compounding , Fatty Liver/metabolism , Fatty Liver/pathology , Hep G2 Cells , Humans , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/pathology , PPAR alpha/genetics , PPAR gamma/genetics , Phosphatidylcholines/administration & dosage , Silymarin/administration & dosage , Vitamin E/administration & dosage
17.
Cell Physiol Biochem ; 44(3): 1078-1092, 2017.
Article En | MEDLINE | ID: mdl-29179206

BACKGROUND/AIMS: Adipose-derived Stem Cells (ASCs) are used in Regenerative Medicine, including fat grafting, recovery from local tissue ischemia and scar remodeling. The aim of this study was to evaluate hyaluronan based gel effects on ASCs differentiation and proliferation. METHODS: Comparative analyses using high (H) and low (L) molecular weight hyaluronans (HA), hyaluronan hybrid cooperative complexes (HCCs), and high and medium cross-linked hyaluronan based dermal fillers were performed. Human ASCs were characterized by flow cytometry using CD90, CD34, CD105, CD29, CD31, CD45 and CD14 markers. Then, cells were treated for 7, 14 and 21 days with hyaluronans. Adipogenic differentiation was evaluated using Oil red-O staining and expression of leptin, PPAR-γ, LPL and adiponectin using qRT-PCR. Adiponectin was analyzed by immunofluorescence, PPAR-γ and adiponectin were analyzed using western blotting. ELISA assays for adiponectin and leptin were performed. RESULTS: HCCs highly affected ASCs differentiation by up-regulating adipogenic genes and related proteins, that were also secreted in the culture medium. H-HA and L-HA induced a lower level of ASCs differentiation. CONCLUSION: HCCs-based formulations clearly enhance adipogenic differentiation and proliferation, when compared with linear HA and cross-linked hyaluronans. Injection of HCCs in subdermal fat compartment may recruit and differentiate stem cells in adipocytes, and considerably improving fat tissue renewal.


Cell Differentiation/drug effects , Hyaluronic Acid/pharmacology , Adipogenesis/drug effects , Adiponectin/analysis , Adiponectin/metabolism , Adipose Tissue/cytology , Adult , Antigens, CD/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Humans , Hyaluronic Acid/chemistry , Leptin/analysis , Leptin/metabolism , Lipoprotein Lipase/metabolism , Microscopy, Fluorescence , Middle Aged , Molecular Weight , PPAR gamma/metabolism , Phenotype , Stem Cells/cytology , Stem Cells/metabolism , Surgery, Plastic
18.
Toxicol Lett ; 262: 100-104, 2016 Nov 16.
Article En | MEDLINE | ID: mdl-27693777

Myclobutanil is a conazole class fungicide widely used as an agrichemical. It is approved for use on fruit, vegetables and seed commodities in the EU and elsewhere to control fungi such as Ascomycetes, Fungi Imperfecti and, Basidiomycetes. Its widespread use has raised the issue of possible health risks for agrarian communities and the general population, which can be exposed to residues present in food and drinking water. The toxicities identified include adverse effects on liver and kidney and on the development of male reproductive organs. Since the liver is the first-line organ in the defense against xenobiotics, toxic effects on hepatic metabolism cause degeneration, necrosis, and tissue hypertrophy. Therefore, we investigated myclobutanil's effects on the human liver cell line HepG2. We found that myclobutanil increases the amount of fatty acids in these hepatic cells, as evaluated with Oil Red O staining, and progressively reduces cell viability from 1ppm to 500ppm. Analysis of biomarkers such as Bcl-xL/Bak and Mcl-1/Bak confirmed activation of cell death pathways at low doses. Therefore, myclobutanil may play an important role in the pathogenesis and progression of chronic hepatocellular diseases in humans.


Apoptosis/drug effects , Fungicides, Industrial/toxicity , Nitriles/toxicity , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/pathology , Triazoles/toxicity , Cell Death/drug effects , Cytochromes c/metabolism , Fatty Acids/metabolism , Hep G2 Cells , Hepatocytes/drug effects , Humans , L-Lactate Dehydrogenase/metabolism , Lipid Metabolism/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-X Protein/metabolism
19.
Toxicol Lett ; 249: 1-4, 2016 May 13.
Article En | MEDLINE | ID: mdl-27016407

Mancozeb, a manganese/zinc ethylene-bis-dithiocarbamate, is a fungicide routinely used in pest control programs. However, it has been found to have deleterious effects on human health and on the environment. Indeed, its massive use has raised the issue of possible health risks for agrarian communities; the molecule can also reach human cells via the food chain and alter metabolism, endocrine activity and cell survival. In particular, mancozeb induces many toxic effects on hepatic cell metabolism. For this reason, we investigated its effect in an in vitro model of hepatic damage, namely fatty acid-induced nonalcoholic fatty liver disease in the HepG2 cell line. We found that the hepatic toxicity of the fungicide exacerbated fatty acid-induced steatosis, as manifested by an increase in intracellular lipid droplet accumulation. Furthermore, mancozeb altered cell metabolism and induced cell death through upregulation of lactate dehydrogenase and cytochrome c, respectively, in dose-dependent manners. Therefore, mancozeb may play an important role in the pathogenesis and progression of chronic disease in humans and represents a danger for human health in high doses.


Fungicides, Industrial/toxicity , Maneb/toxicity , Non-alcoholic Fatty Liver Disease/chemically induced , Zineb/toxicity , Cell Survival/drug effects , Cytochromes c/metabolism , Hep G2 Cells , Humans , L-Lactate Dehydrogenase/metabolism , Lipid Metabolism/drug effects
20.
Int J Biochem Cell Biol ; 60: 60-72, 2015 Mar.
Article En | MEDLINE | ID: mdl-25562512

Bone marrow mesenchymal stromal cells (BM-MSCs) are multipotent cells capable of differentiating toward osteoblatic and adipocytic phenotypes. BM-MSCs play several key roles including bone remodeling, establishment of hematopoietic niche and immune tolerance induction. Here, we investigated the effect of resveratrol (RSV), a therapeutically promising natural polyphenol, on the commitment of human BM-MSCs primary cultures. Cell differentiation was evaluated by means of morphological analysis, specific staining and expression of osteogenic and adipocytic master genes (Runx-2, PPARγ). To maintain BM-MSC multipotency, all experiments were performed on cells at very early passages. At any concentration RSV, added to standard medium, did not affect the phenotype of confluent BM-MSCs, while, when added to osteogenic or adipogenic medium, 1 µM RSV enhances the differentiation toward osteoblasts or adipocytes, respectively. Conversely, the addition of higher RSV concentration (25 µM) to both differentiation media resulted exclusively in BM-MSCs adipogenesis. Surprisingly, the analysis of RSV molecular effects demonstrated that the compound completely substitutes insulin, a key component of adipogenic medium. We also observed that RSV treatment is associated to enhanced phosphorylation of CREB, a critical effector of insulin adipogenic activity. Finally, our observations contribute to the mechanistic elucidation of the well-known RSV positive effect on insulin sensitivity and type 2 diabetes mellitus.


Bone Marrow Cells/cytology , Insulins/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Stilbenes/pharmacology , Adipogenesis/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Humans , Phosphorylation/drug effects , Resveratrol
...