Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 153
1.
J Thorac Oncol ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38723776

INTRODUCTION: Pulmonary pleomorphic carcinoma (PPC) is an aggressive and highly heterogeneous NSCLC whose underlying biology is still poorly understood. METHODS: A total of 42 tumor areas from 20 patients with PPC were microdissected, including 39 primary tumors and three metastases, and the histologically distinct components were subjected to whole exome sequencing separately. We further performed in silico analysis of microdissected bulk RNA sequencing and methylation data of 28 samples from 14 patients with PPC. We validated our findings using immunohistochemistry. RESULTS: The epithelial and the sarcomatoid components of PPCs shared a large number of genomic alterations. Most mutations in cancer driver genes were clonal and truncal between the two components of PPCs suggesting a common ancestor. The high number of alterations in the RTK-RAS pathway suggests that it plays an important role in the evolution of PPC. The metastases morphologically and genetically resembled the epithelial or the sarcomatoid components of the tumor. The transcriptomic and epigenetic profiles of the sarcomatoid components of PPCs with matched squamous-like or adenocarcinoma-like components differed from each other, and they shared more similarities to their matched epithelial components. NCAM1/CD56 was preferentially expressed in the sarcomatoid component of squamous-like PPCs, whereas CDH1/E-Cadherin expression was down-regulated in the sarcomatoid component of most PPCs. CONCLUSION: Lung adenocarcinoma-like PPCs are mainly driven by RTK-RAS signaling, whereas epithelial-mesenchymal transition programs as highlighted by increased NCAM1 and decreased CDH1 expression govern the epithelial-sarcomatoid transition between the clonally related tumor components. Several alterations in PPCs pinpoint therapeutic opportunities.

2.
J Vis Exp ; (204)2024 Feb 02.
Article En | MEDLINE | ID: mdl-38372340

Recurrence poses a notable challenge after hepatocellular carcinoma (HCC) treatment, impacting more than 70% of patients who undergo surgical resection. Recurrence stems from undetected micro-metastasis or de novo cancer, potentially triggered by postsurgical liver regeneration. Prior research employed HCC cell lines in orthotopic models to study the impact of liver regeneration, but their limited validity prompted the need for a more representative model. Here, we introduce a novel approach utilizing patient-derived HCC organoids to investigate the influence of liver regeneration on HCC. Patient tumor tissues are processed to create tumor organoids, embedded in a three-dimensional basement membrane matrix, and cultured in a liver-specific medium. One million organoids are injected into the right superior lobe (RSL) of immunodeficient mice, confirming macroscopic tumor growth through sonography. The intervention group undergoes resection of the left lateral lobe (LLL) (30% of total liver volume) or additionally, the middle lobe (ML) (65% of total liver volume) to induce liver regeneration within the tumor site. The control group experiences re-laparotomy without liver tissue resection. After 2 weeks, both groups undergo tumor and normal tissue explantation. In conclusion, this patient-derived HCC organoid model offers a robust platform to investigate the impact of liver regeneration post-cancer resection. Its multi-cellular composition, genetic diversity, and prolonged culture capabilities make it an invaluable tool for studying HCC recurrence mechanisms and potential interventions.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Liver Regeneration , Heterografts , Organoids/metabolism
3.
Nat Biomed Eng ; 8(4): 345-360, 2024 Apr.
Article En | MEDLINE | ID: mdl-38114742

Predicting the toxicity of cancer immunotherapies preclinically is challenging because models of tumours and healthy organs do not typically fully recapitulate the expression of relevant human antigens. Here we show that patient-derived intestinal organoids and tumouroids supplemented with immune cells can be used to study the on-target off-tumour toxicities of T-cell-engaging bispecific antibodies (TCBs), and to capture clinical toxicities not predicted by conventional tissue-based models as well as inter-patient variabilities in TCB responses. We analysed the mechanisms of T-cell-mediated damage of neoplastic and donor-matched healthy epithelia at a single-cell resolution using multiplexed immunofluorescence. We found that TCBs that target the epithelial cell-adhesion molecule led to apoptosis in healthy organoids in accordance with clinical observations, and that apoptosis is associated with T-cell activation, cytokine release and intra-epithelial T-cell infiltration. Conversely, tumour organoids were more resistant to damage, probably owing to a reduced efficiency of T-cell infiltration within the epithelium. Patient-derived intestinal organoids can aid the study of immune-epithelial interactions as well as the preclinical and clinical development of cancer immunotherapies.


Antibodies, Bispecific , Apoptosis , Organoids , T-Lymphocytes , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Humans , Organoids/immunology , T-Lymphocytes/immunology , Intestines/immunology , Immunotherapy/methods , Epithelial Cell Adhesion Molecule/immunology , Neoplasms/immunology , Neoplasms/therapy , Female , Intestinal Mucosa/immunology
4.
J Cancer Res Clin Oncol ; 149(20): 17943-17955, 2023 Dec.
Article En | MEDLINE | ID: mdl-37966614

BACKGROUND: Ovarian carcinoma is the most lethal gynecologic malignancy because of its late diagnosis, extremely high recurrence rate, and limited curative treatment options. In clinical practice, high-grade serous carcinoma (HGSC) predominates due to its frequency, high aggressiveness, and rapid development of drug resistance. Recent evidence suggests that CXCL12 is an important immunological factor in ovarian cancer progression. Therefore, we investigated the predictive and prognostic significance of the expression of this chemokine in tumor and immune cells in patients with HGSC. METHODS: We studied a cohort of 47 primary high-grade serous ovarian carcinomas and their associated recurrences. A tissue microarray was constructed to evaluate the CXCL12 immunostained tumor tissue. CXCL12 expression was evaluated and statistically analyzed to correlate clinicopathologic data, overall survival, and recurrence-free survival. RESULTS: A high proportion of CXCL12 + positive immune cells in primary ovarian serous carcinoma correlated significantly with chemosensitivity (p = 0.005), overall survival (p = 0.021), and longer recurrence-free survival (p = 0.038). In recurrent disease, high expression of CXCL12 was also correlated with better overall survival (p = 0.040). Univariate and multivariate analysis revealed that high CXCL12 + tumor-infiltrating immune cells (TICs) (HR 0.99, p = 0.042, HR 0.99, p = 0.023, respectively) and combined CXCL12 + /CD66b + infiltration (HR 0.15, p = 0.001, HR 0.13, p = 0.001, respectively) are independent favorable predictive markers for recurrence-free survival. CONCLUSION: A high density of CXCL12 + TICs predicts a good response to chemotherapy, leading to a better overall survival and a longer recurrence-free interval. Moreover, with concomitant high CXCL12/CD66b TIC density, it is an independent favorable predictor of recurrence-free survival in patients with ovarian carcinoma.


Carcinoma , Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial , Prognosis , Cystadenocarcinoma, Serous/pathology , Biomarkers, Tumor/metabolism , Chemokine CXCL12
5.
NPJ Precis Oncol ; 7(1): 112, 2023 Nov 02.
Article En | MEDLINE | ID: mdl-37919480

Sarcomatoid Urothelial Bladder Cancer (SARC) is a rare and aggressive histological subtype of bladder cancer for which therapeutic options are limited and experimental models are lacking. Here, we report the establishment of a long-term 3D organoid-like model derived from a SARC patient (SarBC-01). SarBC-01 emulates aggressive morphological, phenotypical, and transcriptional features of SARC and harbors somatic mutations in genes frequently altered in sarcomatoid tumors such as TP53 (p53) and RB1 (pRB). High-throughput drug screening, using a library comprising 1567 compounds in SarBC-01 and conventional urothelial carcinoma (UroCa) organoids, identified drug candidates active against SARC cells exclusively, or UroCa cells exclusively, or both. Among those, standard-of-care chemotherapeutic drugs inhibited both SARC and UroCa cells, while a subset of targeted drugs was specifically effective in SARC cells, including agents targeting the Glucocorticoid Receptor (GR) pathway. In two independent patient cohorts and in organoid models, GR and its encoding gene NR3C1 were found to be significantly more expressed in SARC as compared to UroCa, suggesting that high GR expression is a hallmark of SARC tumors. Further, glucocorticoid treatment impaired the mesenchymal morphology, abrogated the invasive ability of SARC cells, and led to transcriptomic changes associated with reversion of epithelial-to-mesenchymal transition, at single-cell level. Altogether, our study highlights the power of organoids for precision oncology and for providing key insights into factors driving rare tumor entities.

6.
Nat Commun ; 14(1): 7775, 2023 Nov 27.
Article En | MEDLINE | ID: mdl-38012149

Cells collectively determine biological functions by communicating with each other-both through direct physical contact and secreted factors. Consequently, the local microenvironment of a cell influences its behavior, gene expression, and cellular crosstalk. Disruption of this microenvironment causes reciprocal changes in those features, which can lead to the development and progression of diseases. Hence, assessing the cellular transcriptome while simultaneously capturing the spatial relationships of cells within a tissue provides highly valuable insights into how cells communicate in health and disease. Yet, methods to probe the transcriptome often fail to preserve native spatial relationships, lack single-cell resolution, or are highly limited in throughput, i.e. lack the capacity to assess multiple environments simultaneously. Here, we introduce fragment-sequencing (fragment-seq), a method that enables the characterization of single-cell transcriptomes within multiple spatially distinct tissue microenvironments. We apply fragment-seq to a murine model of the metastatic liver to study liver zonation and the metastatic niche. This analysis reveals zonated genes and ligand-receptor interactions enriched in specific hepatic microenvironments. Finally, we apply fragment-seq to other tissues and species, demonstrating the adaptability of our method.


Liver , Transcriptome , Animals , Mice , Transcriptome/genetics , Sequence Analysis, RNA/methods , Liver/metabolism , Single-Cell Analysis/methods , Gene Expression Profiling/methods
7.
Cell ; 186(23): 5068-5083.e23, 2023 11 09.
Article En | MEDLINE | ID: mdl-37804830

Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.


Arginine , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Arginine/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Lipid Metabolism , Liver Neoplasms/metabolism
8.
Biomedicines ; 11(8)2023 Aug 01.
Article En | MEDLINE | ID: mdl-37626656

Protein histidine phosphorylation (pHis) is a posttranslational modification involved in cell cycle regulation, ion channel activity and phagocytosis. Using novel monoclonal antibodies to detect pHis, we previously reported that the loss of the histidine phosphatase LHPP (phospholysine phosphohistidine inorganic pyrophosphate phosphatase) results in elevated pHis levels in hepatocellular carcinoma. Here, we show that intestinal inflammation correlates with the loss of LHPP in dextran sulfate sodium (DSS)-treated mice and in inflammatory bowel disease (IBD) patients. Increased histidine phosphorylation was observed in intestinal epithelial cells (IECs), as determined by pHis immunofluorescence staining of colon samples from a colitis mouse model. However, the ablation of Lhpp did not cause increased pHis or promote intestinal inflammation under physiological conditions or after DSS treatment. Our observations suggest that increased histidine phosphorylation plays a role in colitis, but the loss of LHPP is not sufficient to increase pHis or to cause inflammation in the intestine.

9.
Cancers (Basel) ; 15(14)2023 Jul 24.
Article En | MEDLINE | ID: mdl-37509411

The incidence of rectal cancer (RC) is increasing in the population aged ≤ 49 (early-onset RC-EORC). EORC patients are more likely to present with locally advanced disease at diagnosis than late-onset RC (LORC; aged ≥ 50) patients. As a consequence, more EORC patients undergo neoadjuvant therapies. The response to treatment in EORC patients is still unknown. This study aims to explore the effect of age of onset on the pathological response to neoadjuvant therapies in sporadic locally advanced RC (LARC) patients. Based on an institutional prospectively maintained database, LARC patients undergoing neoadjuvant therapies and radical surgery between January 2010 and December 2022 were allocated to the EORC and LORC groups. The primary endpoint was the rate of incomplete response (Dworak 0-2). A total of 326 LORC and 79 EORC patients were included. Pre-neoadjuvant tumor features were comparable. A significantly higher rate of incomplete response was observed in EORC patients (49% vs. 35%; p = 0.028). From multivariable analysis, early age of onset, smoking and extramural invasion presented as independent risk factors for a worse response. This study demonstrates that an early age of onset is related to a worse response and calls for different multimodal strategies in this group of patients.

10.
Mol Biol Rep ; 50(8): 7133-7139, 2023 Aug.
Article En | MEDLINE | ID: mdl-37389703

BACKGROUND: Cylindroma of the breast is a rare benign neoplasm. Since its first description in 2001, 20 cases have been reported in the literature. METHODS AND RESULTS: We report another case of this rare tumor in a 60-year-old woman with demonstration of the underlying molecular alteration. Histologically, the tumor showed the typical "jigsaw" pattern of a dual population of cells with a triple-negative phenotype. The pathognomonic mutation of the CYLD gene mutation was detected by whole exome sequencing. Cylindromas show morphological overlap with the solid-basaloid variant of adenoid cystic carcinoma, which renders this differential diagnosis difficult. However, distinction of these two lesions is of outmost importance, since cylindromas, in contrast to solid-basaloid variant of adenoid cystic carcinoma, behave in an entirely benign fashion. CONCLUSIONS: Careful evaluation of morphological features such as mitotic figures and cellular atypia is crucial in the diagnostic work-up of triple-negative breast lesions. It is important to keep cylindroma in mind as a pitfall and possible differential diagnosis for the solid-basaloid variant of adenoid cystic carcinoma. Molecular detection of CYLD gene mutation is helpful in cases with ambiguous histology. With this case report, we aim to contribute to a better understanding of mammary cylindroma and facilitate the diagnosis of this rare entity.


Carcinoma, Adenoid Cystic , Humans , Breast/pathology , Carcinoma, Adenoid Cystic/diagnostic imaging , Carcinoma, Adenoid Cystic/genetics , Deubiquitinating Enzyme CYLD/genetics , Diagnosis, Differential , Mutation/genetics , Phenotype , Female , Middle Aged
11.
Mol Cell ; 83(12): 1983-2002.e11, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37295433

The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.


Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Introns/genetics , Prostatic Neoplasms/metabolism , RNA Splicing/genetics , Spliceosomes/metabolism , Signal Transduction , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Cell Line, Tumor , Prostatic Neoplasms, Castration-Resistant/genetics
12.
J Mammary Gland Biol Neoplasia ; 28(1): 13, 2023 06 09.
Article En | MEDLINE | ID: mdl-37294349

The protein tyrosine phosphatase SHP2 activates oncogenic pathways downstream of most receptor tyrosine kinases (RTK) and has been implicated in various cancer types, including the highly aggressive subtype of triple-negative breast cancer (TNBC). Although allosteric inhibitors of SHP2 have been developed and are currently being evaluated in clinical trials, neither the mechanisms of the resistance to these agents, nor the means to circumvent such resistance have been clearly defined. The PI3K signaling pathway is also hyperactivated in breast cancer and contributes to resistance to anticancer therapies. When PI3K is inhibited, resistance also develops for example via activation of RTKs. We therefore assessed the effect of targeting PI3K and SHP2 alone or in combination in preclinical models of metastatic TNBC. In addition to the beneficial inhibitory effects of SHP2 alone, dual PI3K/SHP2 treatment decreased primary tumor growth synergistically, blocked the formation of lung metastases, and increased survival in preclinical models. Mechanistically, transcriptome and phospho-proteome analyses revealed that resistance to SHP2 inhibition is mediated by PDGFRß-evoked activation of PI3K signaling. Altogether, our data provide a rationale for co-targeting of SHP2 and PI3K in metastatic TNBC.


Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Phosphatidylinositol 3-Kinases/therapeutic use , Signal Transduction , Cell Line, Tumor
13.
Cancer Res ; 83(8): 1203-1213, 2023 04 14.
Article En | MEDLINE | ID: mdl-36749655

Metastases from primary prostate cancers to rare locations, such as the brain, are becoming more common due to longer life expectancy resulting from improved treatments. Epigenetic dysregulation is a feature of primary prostate cancer, and distinct DNA methylation profiles have been shown to be associated with the mutually exclusive SPOP-mutant or TMPRSS2-ERG fusion genetic backgrounds. Using a cohort of prostate cancer brain metastases (PCBM) from 42 patients, with matched primary tumors for 17 patients, we carried out a DNA methylation analysis to examine the epigenetic distinction between primary prostate cancer and PCBM, the association between epigenetic alterations and mutational background, and particular epigenetic alterations that may be associated with PCBM. Multiregion sampling of PCBM revealed epigenetic stability within metastases. Aberrant methylation in PCBM was associated with mutational background and PRC2 complex activity, an effect that is particularly pronounced in SPOP-mutant PCBM. While PCBM displayed a CpG island hypermethylator phenotype, hypomethylation at the promoters of genes involved in neuroactive ligand-receptor interaction and cell adhesion molecules such as GABRB3, CLDN8, and CLDN4 was also observed, suggesting that cells from primary tumors may require specific reprogramming to form brain metastasis. This study revealed the DNA methylation landscapes of PCBM and the potential mechanisms and effects of PCBM-associated aberrant DNA methylation. SIGNIFICANCE: DNA methylation analysis reveals the molecular characteristics of PCBM and may serve as a starting point for efforts to identify and target susceptibilities of these rare metastases.


Brain Neoplasms , Prostatic Neoplasms , Humans , Male , DNA Methylation , Prostatic Neoplasms/pathology , CpG Islands/genetics , Epigenomics , Brain Neoplasms/genetics , Nuclear Proteins/metabolism , Repressor Proteins/genetics
14.
Sci Adv ; 9(5): eade8641, 2023 02 03.
Article En | MEDLINE | ID: mdl-36724278

Phosphatidylinositol (PI)regulating enzymes are frequently altered in cancer and have become a focus for drug development. Here, we explore the phosphatidylinositol-5-phosphate 4-kinases (PI5P4K), a family of lipid kinases that regulate pools of intracellular PI, and demonstrate that the PI5P4Kα isoform influences androgen receptor (AR) signaling, which supports prostate cancer (PCa) cell survival. The regulation of PI becomes increasingly important in the setting of metabolic stress adaptation of PCa during androgen deprivation (AD), as we show that AD influences PI abundance and enhances intracellular pools of PI-4,5-P2. We suggest that this PI5P4Kα-AR relationship is mitigated through mTORC1 dysregulation and show that PI5P4Kα colocalizes to the lysosome, the intracellular site of mTORC1 complex activation. Notably, this relationship becomes prominent in mouse prostate tissue following surgical castration. Finally, multiple PCa cell models demonstrate marked survival vulnerability following stable PI5P4Kα inhibition. These results nominate PI5P4Kα as a target to disrupt PCa metabolic adaptation to castrate resistance.


Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Animals , Humans , Male , Mice , Androgen Antagonists , Androgens/metabolism , Cell Line, Tumor , Mechanistic Target of Rapamycin Complex 1/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Signal Transduction
15.
Genomics ; 115(2): 110587, 2023 03.
Article En | MEDLINE | ID: mdl-36796655

Precision oncology relies on the accurate identification of somatic mutations in cancer patients. While the sequencing of the tumoral tissue is frequently part of routine clinical care, the healthy counterparts are rarely sequenced. We previously published PipeIT, a somatic variant calling workflow specific for Ion Torrent sequencing data enclosed in a Singularity container. PipeIT combines user-friendly execution, reproducibility and reliable mutation identification, but relies on matched germline sequencing data to exclude germline variants. Expanding on the original PipeIT, here we describe PipeIT2 to address the clinical need to define somatic mutations in the absence of germline control. We show that PipeIT2 achieves a > 95% recall for variants with variant allele fraction >10%, reliably detects driver and actionable mutations and filters out most of the germline mutations and sequencing artifacts. With its performance, reproducibility, and ease of execution, PipeIT2 is a valuable addition to molecular diagnostics laboratories.


Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Pathology, Molecular , Workflow , Reproducibility of Results , Precision Medicine , Mutation , High-Throughput Nucleotide Sequencing
16.
Cancers (Basel) ; 16(1)2023 Dec 21.
Article En | MEDLINE | ID: mdl-38201475

Most men with prostate cancer (PCa), despite potentially curable localized disease at initial diagnosis, progress to metastatic disease. Despite numerous treatment options, choosing the optimal treatment for individual patients remains challenging. Biomarkers guiding treatment sequences in an advanced setting are lacking. To estimate the diagnostic potential of liquid biopsies in guiding personalized treatment of PCa, we evaluated the utility of a custom-targeted next-generation sequencing (NGS) panel based on the AmpliSeq HD Technology. Ultra-deep sequencing on plasma circulating free DNA (cfDNA) samples of 40 metastatic castration-resistant PCa (mCRPC) and 28 metastatic hormone-naive PCa (mCSPC) was performed. CfDNA somatic mutations were detected in 48/68 (71%) patients. Of those 68 patients, 42 had matched tumor and cfDNA samples. In 21/42 (50%) patients, mutations from the primary tumor tissue were detected in the plasma cfDNA. In 7/42 (17%) patients, mutations found in the primary tumor were not detected in the cfDNA. Mutations from primary tumors were detected in all tested mCRPC patients (17/17), but only in 4/11 with mCSPC. AR amplifications were detected in 12/39 (31%) mCRPC patients. These results indicate that our targeted NGS approach has high sensitivity and specificity for detecting clinically relevant mutations in PCa.

17.
Nat Commun ; 13(1): 7748, 2022 12 14.
Article En | MEDLINE | ID: mdl-36517508

The development of cancer therapies is limited by the availability of suitable drug targets. Potential candidate drug targets can be identified based on the concept of synthetic lethality (SL), which refers to pairs of genes for which an aberration in either gene alone is non-lethal, but co-occurrence of the aberrations is lethal to the cell. Here, we present SLIdR (Synthetic Lethal Identification in R), a statistical framework for identifying SL pairs from large-scale perturbation screens. SLIdR successfully predicts SL pairs even with small sample sizes while minimizing the number of false positive targets. We apply SLIdR to Project DRIVE data and find both established and potential pan-cancer and cancer type-specific SL pairs consistent with findings from literature and drug response screening data. We experimentally validate two predicted SL interactions (ARID1A-TEAD1 and AXIN1-URI1) in hepatocellular carcinoma, thus corroborating the ability of SLIdR to identify potential drug targets.


Neoplasms , Synthetic Lethal Mutations , Humans , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/genetics
18.
BMC Endocr Disord ; 22(1): 292, 2022 Nov 23.
Article En | MEDLINE | ID: mdl-36419107

BACKGROUND: Tumor infiltration with cytotoxic CD8+ T-cells is associated with a favorable outcome in several neoplasms, including thyroid cancer. The chemokine axis CXCR4/SDF-1 correlates with more aggressive tumors, but little is known concerning the prognostic relevance in relation to the tumor immune microenvironment of differentiated thyroid cancer (DTC). METHODS: A tissue microarray (TMA) of 37 tumor specimens of primary DTC was analyzed by immunohistochemistry (IHC) for the expression of CD8+, CXCR4, phosphorylated CXCR4 and SDF-1. A survival analysis was performed on a larger collective (n = 456) at RNA level using data from The Cancer Genome Atlas (TCGA) papillary thyroid cancer cohort. RESULTS: Among the 37 patients in the TMA-cohort, the density of CD8+ was higher in patients with less advanced primary tumors (median cells/TMA-punch: 12.5 (IQR: 6.5, 12.5) in T1-2 tumors vs. 5 (IQR: 3, 8) in T3-4 tumors, p = 0.05). In the TCGA-cohort, CXCR4 expression was higher in patients with cervical lymph node metastasis compared to N0 or Nx stage (CXCR4high/low 116/78 vs. 97/116 vs. 14/35, respectively, p = 0.001). Spearman's correlation analysis of the TMA-cohort demonstrated that SDF-1 was significantly correlated with CXCR4 (r = 0.4, p = 0.01) and pCXCR4 (r = 0.5, p = 0.002). In the TCGA-cohort, density of CD8+ correlated with CXCR4 and SDF-1 expression (r = 0.58, p < 0.001; r = 0.4, p < 0.001). The combined marker analysis of the TCGA cohort demonstrated that high expression of both, CXCR4 and SDF-1 was associated with reduced overall survival in the CD8 negative TCGA cohort (p = 0.004). CONCLUSION: These findings suggest that the prognostic significance of CXCR4 and SDF-1 in differentiated thyroid cancer depends on the density of CD8 positive T-lymphocytes. Further studies with larger sample sizes are needed to support our findings and inform future investigations of new treatment and diagnostic options for a more personalized approach for patients with differentiated thyroid cancer.


Adenocarcinoma , Thyroid Neoplasms , Humans , CD8-Positive T-Lymphocytes/metabolism , Prognosis , Receptors, CXCR4/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Tumor Microenvironment , Chemokine CXCL12/metabolism
20.
Commun Biol ; 5(1): 1144, 2022 10 28.
Article En | MEDLINE | ID: mdl-36307545

Biobanking of surplus human healthy and disease-derived tissues is essential for diagnostics and translational research. An enormous amount of formalin-fixed and paraffin-embedded (FFPE), Tissue-Tek OCT embedded or snap-frozen tissues are preserved in many biobanks worldwide and have been the basis of translational studies. However, their usage is limited to assays that do not require viable cells. The access to intact and viable human material is a prerequisite for translational validation of basic research, for novel therapeutic target discovery, and functional testing. Here we show that surplus tissues from multiple solid human cancers directly slow-frozen after resection can subsequently be used for different types of methods including the establishment of 2D, 3D, and ex vivo cultures as well as single-cell RNA sequencing with similar results when compared to freshly analyzed material.


Formaldehyde , Neoplasms , Humans , Paraffin Embedding , Biological Specimen Banks , Exome Sequencing
...