Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Adv Nutr ; 15(6): 100228, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38609047

Maternal adiposity impacts lactation performance, but the pathways are unclear. We conducted a systematic review to understand whether maternal adiposity (body mass index [BMI] or percentage fat mass) is associated with onset of lactogenesis II (copious milk; hours), human milk production (expressed volume/24 h), and infant consumption of mother's own milk (volume/24 h). We used random-effects standard meta-analyses to compare the relative risk (RR) of delayed lactogenesis II (>72 h) between mothers classified as underweight (BMI <18.5 kg/m2), healthy weight (BMI, 18.5-24.9 kg/m2), and overweight/obese (BMI ≥25 kg/m2) and random-effects meta-regressions to examine associations with hours to lactogenesis II and infant milk consumption. The certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation approach. We included 122 articles. Mothers with underweight (RR: 0.64; 95% CI: 0.49, 0.83; I2 = 39.48%; 8 articles/data points) or healthy weight status (RR: 0.67; 95% CI: 0.57, 0.79; I2 = 70.91%; 15 articles/data points) were less likely to experience delayed lactogenesis II than mothers with overweight/obesity. We found no association between maternal BMI and time to onset of lactogenesis II (ß: 1.45 h; 95% CI: -3.19, 6.09 h; P = 0.52, I2 = 0.00%; 8 articles, 17 data points). Due to limited data, we narratively reviewed articles examining BMI or percentage fat mass and milk production (n = 6); half reported an inverse association and half no association. We found no association between maternal BMI (ß: 6.23 mL; 95% CI: -11.26, 23.72 mL; P = 0.48, I2 = 47.23%; 58 articles, 75 data points) or percentage fat mass (ß: 7.82 mL; 95% CI: -1.66, 17.29 mL; P = 0.10, I2 = 28.55%; 30 articles, 41 data points) and infant milk consumption. The certainty of evidence for all outcomes was very low. In conclusion, mothers with overweight/obesity may be at risk of delayed lactogenesis II. The available data do not support an association with infant milk consumption, but the included studies do not adequately represent mothers with obesity. This study was registered in PROSPERO as 285344.

2.
Food Res Int ; 164: 112385, 2023 02.
Article En | MEDLINE | ID: mdl-36737969

The impact of high temperature short time (HTST, 72 °C, 15 s), Holder pasteurization- (63 °C, 30 min) and high hydrostatic pressure (HHP, 600 MPa-10 min) was evaluated on the digestibility of human milk protein concentrate (HMPC) by using a static in vitro gastrointestinal digestion system. The results showed that the processing steps used to produce the HMPC induced a decrease in readily available nitrogen (non-protein nitrogen and peptides). Overall, digestibility was similar between pasteurized and raw HMPC (degree of hydrolysis ranged from 26 to 34 %). Lactoferrin was more susceptible to gastric and intestinal digestion after thermal pasteurization. Additionally, the resistance of ß-casein to digestion increased after HHP and Holder pasteurization due to aggregation and changes in protein structure. During intestinal digestion, Holder pasteurization induced a higher release of arginine, phenylalanine and tyrosine from HMPC compared to raw and HHP-treated HMPC. Overall, protein structural changes induced by human milk (HM) processing (freeze-thawing and filtration) and pasteurization treatments affected HMPC proteolysis during in vitro digestion. However, protein digestion behaviors were quite similar for raw and HHP-treated HMPC compared to the thermal-treated HMPC, with no effect on lactoferrin digestion. Consequently, pasteurization of HMPC by HHP represents an interesting non-thermal process that preserves the HM bioactive proteins during digestion.


Lactoferrin , Pasteurization , Infant, Newborn , Humans , Pasteurization/methods , Lactoferrin/chemistry , Milk, Human/chemistry , Milk Proteins/chemistry , Digestion
3.
Adv Nutr ; 14(1): 173-189, 2023 01.
Article En | MEDLINE | ID: mdl-36811588

When there is an inadequate supply of mother's milk, pasteurized donor human milk is preferred over formula to supplement feeds for preterm infants. Although providing donor milk helps to improve feeding tolerance and reduce necrotizing enterocolitis, changes to its composition and reductions in bioactivity during processing, are thought to contribute to the slower growth often exhibited by these infants. To improve the clinical outcomes of recipient infants by maximizing the quality of donor milk, research is currently investigating strategies to optimize all aspects of processing, including pooling, pasteurization, and freezing; however, reviews of this literature typically only summarize the impact of a processing technique on composition or bioactivity. Reviews of published research investigating the impact of donor milk processing on infant digestion/absorption are lacking and thus, was the objective for this systematic scoping review, Open Science Framework (https://doi.org/10.17605/OSF.IO/PJTMW). Databases were searched for primary research studies evaluating donor milk processing for pathogen inactivation or other rationale and subsequent effect on infant digestion/absorption. Non-human milk studies or those assessing other outcomes were excluded. Overall, 24 articles from 12,985 records screened were included. Most studied thermal methods to inactivate pathogens, predominantly Holder pasteurization (HoP) (62.5°C, 30 min) and high-temperature short-time. Heating consistently decreased lipolysis and increased proteolysis of lactoferrin and caseins; however, protein hydrolysis was unaffected from in vitro studies. The abundance and diversity of released peptides remain unclear and should be further explored. Greater investigation into less-harsh methods for pasteurization, such as high-pressure processing, is warranted. Only 1 study assessed the impact of this technique and found minimal impact on digestion outcomes compared with HoP. Fat homogenization appeared to positively impact fat digestion (n = 3 studies), and only 1 eligible study investigated freeze-thawing. Identified knowledge gaps regarding optimal methods of processing should be further explored to improve the quality and nutrition of donor milk.


Infant Nutritional Physiological Phenomena , Infant, Premature , Infant, Newborn , Infant , Humans , Milk, Human/chemistry , Nutritional Status , Digestion
4.
Food Chem ; 411: 135477, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-36701922

Holder pasteurization (HoP) (62.5 °C, 30 min) of donor human milk is widely used to inactivate potential pathogens but may lead to denaturation and aggregation of bioactive proteins, reducing their functionality. In contrast, high pressure processing (HPP) is a non-thermal technique that minimally affects assessed bioactive components; however, it is unclear how HPP affects protein digestion, and retention of functional bioactive proteins. Raw or processed (HoP; HPP[500 MPa,10 min]) pools of milk (N = 3, from 9 donors) were subjected in triplicate to in vitro digestion simulating the preterm infant gastrointestinal tract. Compared to raw or HPP, HoP increased intestinal proteolysis of lactoferrin and bioactive milk fat globule membrane proteins. Lysozyme activity was impacted by digestion following HoP (72 % to 7 %)-significantly more than HPP (75 % to 34 %) or raw (100 % to 39 %), which did not differ. Proteins in HPP-treated donor milk are digested no different than raw milk, while preserved bioactivity remains functional upon digestion.


Infant, Premature , Milk, Human , Infant , Infant, Newborn , Humans , Pasteurization/methods , Lactoferrin , Digestion
5.
Front Nutr ; 9: 918814, 2022.
Article En | MEDLINE | ID: mdl-35662924

Pasteurized donor human milk is recommended for hospitalized preterm infants when mother's own milk is unavailable. Our aim was to compare the antiviral activity of human milk processed by Holder pasteurization (HoP) or high-pressure processing (HPP) against representative enveloped and non-enveloped viruses including cytomegalovirus and hepatitis A virus. Expressed milk from 20 donors collected from the Ontario Milk Bank was combined into 10 pools, each from two unique donors. Each pool was processed by HoP (62.5°C, 30 min) or HPP (500 MPa, 8 min, 4°C) and subsequently inoculated with cytomegalovirus or hepatitis A virus to achieve a final concentration of 5-log plaque-forming units/mL. Plaque reduction assays were used to quantify detectable virus after 30 min incubation (room temperature). Post hoc experiments using a 4 h incubation time were conducted if reductions were detected at 30 min. Irrespective of processing, cytomegalovirus concentrations declined in all pools after 30 min incubation (P < 0.0001). Milk processed by HoP exhibited significantly less reduction compared to raw milk (P = 0.0069). In post hoc experiments, anti-cytomegalovirus activity was maintained at 4 h, with high inter-pool variability. Hepatitis A virus concentration remained unchanged after 30 min incubation in raw and processed milk. Anti-cytomegalovirus activity in human milk is preserved following HoP and HPP, persisting up to 4 h post-inoculation; anti-hepatitis A virus activity was not observed in raw or processed milk. Further research is needed to understand how HoP or promising alternative processing methods affect the antiviral activity of donated milk, given its potential importance to recipient infants.

6.
Lipids ; 57(3): 197-202, 2022 05.
Article En | MEDLINE | ID: mdl-35170053

From February 2022, all infant formula sold in the European Union must contain docosahexaenoic acid (DHA) at ~0.33%-1.14% of total fat with no minimum requirement for arachidonic acid (ARA). This work examines the association between DHA and ARA levels in human milk, the gold standard for infant feeding. Human milk (n = 470) was collected over 12-weeks postpartum from lactating mothers (n = 100) of infants born weighing <1250 g (NCT02137473). Fatty acids were analyzed by gas chromatography. ARA and DHA concentrations were associated in human milk (ß = 0.47 [95% confidence interval 0.38-0.56] mol%), including transitional and mature milk, but not colostrum. This remained significant upon adjustment for percentages of other saturated, monounsaturated, n-3, or n-6 fatty acids, day of sample collection, or maternal characteristics (body mass index, ethnicity, education, and income). Infant formulas containing relatively high concentrations of DHA without ARA, as permitted by the new regulations, would not reflect the balance of these fatty acids in human milk.


Infant Formula , Milk, Human , Arachidonic Acid/analysis , Docosahexaenoic Acids/analysis , Fatty Acids/analysis , Female , Humans , Infant , Infant Formula/chemistry , Lactation , Milk, Human/chemistry
7.
Food Chem ; 374: 131808, 2022 Apr 16.
Article En | MEDLINE | ID: mdl-35021581

This work evaluated the impact of high temperature short time (HTST, 72 °C, 15 s), high hydrostatic pressure (HHP, 400-600 MPa at 5 and 10 min) and Holder pasteurization (HoP, 62.5 °C, 30 min) on protein profile and aggregation in a human milk protein concentrate (HMPC). The structural changes induced in milk proteins were investigated in HMPC as well as in sedimentable and non-sedimentable fractions recovered after ultracentrifugation. The results showed that heat treatments induced more protein denaturation and aggregation than did HHP treatments. Indeed, heat-induced protein aggregates observed in HMPC and the sedimentable fraction were mainly composed of lactoferrin and α-lactalbumin. More specifically, the concentration of lactoferrin in HMPC decreased by 86% after HTST and HoP whereas no effect was observed after HHP treatment. These results show the potential of HHP processing as a pasteurization method for HMPC since it minimizes the impact on protein structure, which generally correlates to protein quality and bioactivity.


Milk Proteins , Pasteurization , Hot Temperature , Humans , Hydrostatic Pressure , Milk Proteins/analysis , Milk, Human/chemistry , Temperature
8.
PLoS One ; 16(9): e0257633, 2021.
Article En | MEDLINE | ID: mdl-34591894

Milk is a highly complex, heterogeneous biological fluid that contains non-nutritive, bioactive extracellular vesicles called exosomes. Characterization of milk-derived exosomes (MDEs) is challenging due to the lack of standardized methods that are currently being used for milk pre-processing, storage, and exosome isolation. In this study, we tested: 1) three pre-processing methods to remove cream, fat, cellular debris, and casein proteins from bovine milk to determine whether pre-processing of whole milk prior to long-term storage improves MDE isolations, 2) the suitability of two standard exosome isolation methods for MDE fractionation, and 3) four extraction protocols for obtaining high quality RNA from bovine and human MDEs. MDEs were characterized via Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and western immunoblotting for CD9, CD63, and Calnexin protein markers. We also present an optimized method of TEM sample preparation for MDEs. Our results indicate that: 1) Removal of cream and fat globules from unpasteurized bovine milk, prior to long-term storage, improves the MDE yield but not purity, 2) Differential ultracentrifugation (DUC) combined with serial filtration is better suited for bovine MDE isolation compared to ExoQuick (EQ) combined with serial filtration, however both methods were comparable for human milk, and 3) TRIzol LS is better suited for RNA extraction from bovine MDEs isolated by EQ and DUC methods. 4) TRIzol LS, TRIzol+RNA Clean and Concentrator, and TRIzol LS+RNA Clean and Concentrator methods can be used for RNA extractions from human MDEs isolated by EQ, yet the TRIzol LS method is better suited for human MDEs isolated by DUC. The QIAzol + miRNeasy Mini Kit produced the lowest RNA yield for bovine and human MDEs.


Exosomes/chemistry , Fractional Precipitation , Milk, Human/metabolism , Milk/metabolism , RNA/isolation & purification , Ultracentrifugation , Animals , Cattle , Exosomes/metabolism , Female , Filtration , Humans , Microscopy, Electron, Transmission , RNA/metabolism
9.
Am J Clin Nutr ; 114(4): 1523-1534, 2021 10 04.
Article En | MEDLINE | ID: mdl-34254983

BACKGROUND: Infants born at very low birth weight (VLBW) are vulnerable to deficits in fatty acids (FAs) but little is known of factors that influence the intakes or composition of their human milk feeds. OBJECTIVES: We aimed to identify sources of variability in the fat composition of human milk fed to VLBW infants and examine the impact of milk source (mother's own or donor) on fat and FA intakes. METHODS: Serial samples of mother's milk (n = 476) and donor milk (n = 53) fed to infants born weighing <1250 g (n = 114 infants from 100 mothers) were collected [Optimizing Mothers' Milk for Preterm Infants (OptiMoM) randomized clinical trial]. Fat and FA were analyzed using a mid-infrared human milk analyzer and GC with flame ionization detection. RESULTS: At full enteral feeding, donor milk is estimated to provide 1.3 g · kg-1 · d-1 less total fat than mature mother's milk (recommended intake: 4.8 g · kg-1 · d-1), and 5-9 mg · kg-1 · d-1 less DHA (22:6n-3) and arachidonic acid (20:4n-6) (estimated average requirement: 55-60 and 35-45 mg · kg-1 · d-1, respectively) than colostrum or transitional milk. Similar deficits were observed in measured intakes of a subset of OptiMoM infants. In multivariable-adjusted models, maternal ethnicity had medium to large [≥0.5 SD score (SDS)] effects on DHA, SFAs, and MUFAs. Mothers with prepregnancy BMI in overweight and obese categories had higher milk total fat (ß: 0.35; 95% CI: 0.10, 0.61 and ß: 0.46; 95% CI: 0.16, 0.77 SDS, respectively). Those with BMI ≥30 in addition had higher proportions of SFAs (ß: 0.61; 95% CI: 0.33, 0.89 SDS) and lower DHA (ß: -0.54; 95% CI: -0.89, -0.20 SDS). Other factors, such as gestational age and income, were also associated with FA composition. CONCLUSIONS: The fat and FA content of human milk fed to VLBW infants is variable. Care must be taken to ensure fat and FA intakes meet recommendations, particularly when feeding a high proportion of donor milk.This trial was registered at clinicaltrials.gov as NCT02137473.


Fatty Acids/chemistry , Milk, Human/chemistry , Colostrum/chemistry , Female , Humans , Infant, Newborn , Infant, Premature , Infant, Very Low Birth Weight , Male , Mothers , Pregnancy
10.
J Nutr ; 151(7): 2075-2083, 2021 07 01.
Article En | MEDLINE | ID: mdl-33847342

BACKGROUND: Donor milk is the standard of care for hospitalized very low birth weight (VLBW) infants when mother's milk is unavailable; however, growth of donor milk-fed infants is frequently suboptimal. Variability in nutrient composition of donated milk complicates the production of a uniform pooled product and, subsequently, the provision of adequate nutrition to promote optimal growth and development of VLBW infants. We reasoned a machine learning approach to construct batches using characteristics of the milk donation might be an effective strategy in reducing the variability in donor milk product composition. OBJECTIVE: The objective of this study was to identify whether machine learning models can accurately predict donor milk macronutrient content. We focused on predicting fat and protein, given their well-established importance in VLBW infant growth outcomes. METHODS: Samples of donor milk, consisting of 272 individual donations and 61 pool samples, were collected from the Rogers Hixon Ontario Human Milk Bank and analyzed for macronutrient content. Four different machine learning models were constructed using independent variable groups associated with donations, donors, and donor-pumping practices. A baseline model was established using lactation stage and infant gestational status. Predictions were made for individual donations and resultant pools. RESULTS: Machine learning models predicted protein of individual donations and pools with a mean absolute error (MAE) of 0.16 g/dL and 0.10 g/dL, respectively. Individual donation and pooled fat predictions had an MAE of 0.91 g/dL and 0.42 g/dL, respectively. At both the individual donation and pool levels, protein predictions were significantly more accurate than baseline, whereas fat predictions were competitive with baseline. CONCLUSIONS: Machine learning models can provide accurate predictions of macronutrient content in donor milk. The macronutrient content of pooled milk had a lower prediction error, reinforcing the value of pooling practices. Future research should examine how macronutrient content predictions can be used to facilitate milk bank pooling strategies.


Milk Banks , Milk, Human , Female , Humans , Infant, Newborn , Infant, Premature , Infant, Very Low Birth Weight , Machine Learning
11.
J Nutr ; 151(4): 840-847, 2021 04 08.
Article En | MEDLINE | ID: mdl-33693847

BACKGROUND: Bovine milk-based protein modulars are currently available to nutrient-enrich enteral feedings; however, they have limitations for use in very-low-birth-weight infants. OBJECTIVES: Our objectives were to develop a human milk-based protein (HMP) concentrate and to conduct a preclinical assessment of the HMP concentrate in weanling rats. METHODS: An HMP concentrate was produced from donor milk using pressure-driven membrane filtration processes and high hydrostatic pressure processing. Protein and lactoferrin concentrations and lysozyme activity were determined by Kjeldahl, HPLC, and turbidimetric assay, respectively. Male Sprague Dawley rats 24 d old (n = 30) were randomly assigned to 1 of 3 isocaloric AIN-93G diets for 4 wk containing 100% casein (control) or with 50% of the casein replaced with the HMP concentrate (treatment) or a bovine whey protein isolate (treatment). Body weight, food intake, fat mass, plasma amino acid profiles, and organ weights were measured. Data were analyzed using linear regression models. RESULTS: Raw donor milk contained (mean ± SD) 101 ± 6 g protein/kg and 5 ± 1 g lactoferrin/kg of milk solids. Postprocessing, protein and lactoferrin concentrations were 589 ± 3 g/kg and 29 ± 10 g/kg, respectively. Lysozyme activity was initially 209 ± 4 U/kg and increased to 959 ± 39 U/kg in the HMP concentrate. There were no statistically significant differences in body weight, food intake, fat mass, or plasma amino acid profiles between rats fed diets containing the HMP concentrate and the control diet. Full cecum weights were higher in rats fed the HMP concentrate than in those fed control diets (mean difference: 5.59 g; 95% CI: 4.50, 6.68 g; P < 0.0001), likely reflecting the concentration of human milk oligosaccharides. No differences were found for other organ weights. CONCLUSIONS: The HMP concentrate retained important bioactive proteins and supported normal rat growth in the preclinical assessment.


Infant Formula/chemistry , Milk Proteins/administration & dosage , Milk Proteins/chemistry , Milk, Human/chemistry , Amino Acids/blood , Animal Nutritional Physiological Phenomena , Animals , Caseins/administration & dosage , Cattle , Enteral Nutrition , Humans , Infant Formula/microbiology , Infant, Newborn , Infant, Premature , Infant, Very Low Birth Weight , Male , Milk, Human/microbiology , Models, Animal , Organ Size , Rats , Rats, Sprague-Dawley , Weight Gain
12.
JPEN J Parenter Enteral Nutr ; 45(8): 1785-1787, 2021 11.
Article En | MEDLINE | ID: mdl-33433904

BACKGROUND: When there is insufficient mother's milk for preterm infants, fortified human donor milk (DM) is the preferred supplement. Recently, there is growing interest in providing DM to term infants. Aside from vitamin D, mother's milk is a complete source of nutrition for term infants. It is unknown whether supplementation of micronutrients is required for term infants exclusively fed DM, particularly for nutrients affected by heat processing, such as vitamin C. The objective of this study was to determine the total vitamin C content in DM and whether it would be adequate for an infant exclusively fed DM. METHODS: DM samples (n = 56) were collected at a Canadian milk bank from April to August 2018. Vitamin C concentration was determined by high-performance liquid chromatography. RESULTS: DM samples had a vitamin C concentration of 17.7 ± 9.8 mg/L (mean ± SD) and were variable, ranging from 1.9 to 43.2 mg/L. Using these values and assuming an exclusive DM consumption of 780 mL/day, the estimated vitamin C intake would be 13.8 ± 8.6 mg (mean ± SD), falling below the adequate intake of 40 mg/day for infants (0-6 months old). CONCLUSION: Vitamin C supplementation is required for all infants if DM is the sole source of nutrition. Future studies should investigate other heat- and light-sensitive nutrients.


Infant, Premature , Milk, Human , Ascorbic Acid , Canada , Dietary Supplements , Humans , Infant , Infant Nutritional Physiological Phenomena , Infant, Newborn , Milk, Human/chemistry
13.
Appl Physiol Nutr Metab ; 46(1): 10-26, 2021 Jan.
Article En | MEDLINE | ID: mdl-32650645

Holder pasteurization (62.5 °C, 30 min) of human milk is thought to reduce the risk of transmitting viruses to an infant. Some viruses may be secreted into milk - others may be contaminants. The effect of thermal pasteurization on viruses in human milk has yet to be rigorously reviewed. The objective of this study is to characterize the effect of common pasteurization techniques on viruses in human milk and non-human milk matrices. Databases (MEDLINE, Embase, Web of Science) were searched from inception to April 20th, 2020, for primary research articles assessing the impact of pasteurization on viral load or detection of live virus. Reviews were excluded, as were studies lacking quantitative measurements or those assessing pasteurization as a component of a larger process. Overall, of 65 131 reports identified, 109 studies were included. Pasteurization of human milk at a minimum temperature of 56-60 °C is effective at reducing detectable live virus. In cell culture media or plasma, coronaviruses (e.g., SARS-CoV, SARS-CoV-2, MERS-CoV) are highly susceptible to heating at ≥56 °C. Although pasteurization parameters and matrices reported vary, all viruses studied, except parvoviruses, were susceptible to thermal killing. Future research important for the study of novel viruses should standardize pasteurization protocols and should test inactivation in human milk. Novelty In all matrices, including human milk, pasteurization at 62.5 °C was generally sufficient to reduce surviving viral load by several logs or to below the limit of detection. Holder pasteurization (62.5 °C, 30 min) of human milk should be sufficient to inactivate nonheat resistant viruses, including coronaviruses, if present.


Milk, Human/virology , Milk/virology , Pasteurization/methods , Viral Load/statistics & numerical data , Animals , Humans
14.
Br J Nutr ; 122(1): 47-55, 2019 07 14.
Article En | MEDLINE | ID: mdl-31006410

Human donor milk (DM) is Holder pasteurised (62·5°C, 30 min) to ensure its microbiological safety for infant consumption. In low-resource settings, flash heating is used to pasteurise milk. Although there is considerable interest in non-thermal alternatives (high hydrostatic pressure processing (HHP) and UVC irradiation) for pasteurisation, their effect on the fatty acid composition is not well understood. Of particular interest is the effect of pasteurisation on the generation of oxylipins. DM from eight mothers containing bacteria >5 × 107 colony-forming units/l was used. In a paired design, each pool of milk underwent four pasteurisation techniques: Holder; flash heating; UVC (250 nm, 25 min) and HHP (500 MPa, 8 min). Fatty acids were quantified by GC-flame ionisation detection and oxylipins derived from arachidonic acid; 18-carbon PUFA (α-linolenic acid, linoleic acid and γ-linolenic acid) and EPA/DHA were measured by liquid chromatography-tandem MS in aliquots of raw and processed milk. There were no significant changes to the composition of fatty acids following all pasteurisation techniques compared with raw milk. The n-6:n-3 ratio remained constant ranging from 6·4 to 6·6. Several arachidonic acid-derived oxylipins were highest post-UVC and elevated post-HHP compared with raw milk. Several oxylipins derived from 18-carbon PUFA (linoleic and α-linolenic acids) were elevated in UVC-treated milk. EPA/DHA-derived oxylipins were on average, unaffected by pasteurisation. Although some PUFA-derived oxylipins were increased following UVC and HHP, no method affected the fatty acid composition of human DM. Further research is needed to determine if varying levels of oxylipins in human DM as a result of processing can potentially mediate cellular signalling; proliferation and apoptosis, especially important for preterm infant development.


Fatty Acids/chemistry , Hot Temperature , Milk, Human/chemistry , Oxylipins/chemistry , Pasteurization/methods , Female , Humans
15.
J Nutr ; 149(3): 497-504, 2019 03 01.
Article En | MEDLINE | ID: mdl-30770541

BACKGROUND: When mother's milk is insufficient, pasteurized human donor milk (DM) is the recommended supplement for hospitalized very-low-birth-weight infants. The current method of pasteurization (Holder, 62.5°C, 30 min) negatively affects heat-sensitive nutrients and bioactive proteins. OBJECTIVES: Objectives of this study were to compare changes in DM composition after thermal pasteurization (Holder and flash-heating) and nonthermal methods [UV-C irradiation and high hydrostatic pressure (HHP)]. We hypothesized that nonthermal techniques would result in fewer changes to composition. METHODS: Holder, flash-heating (brought to boil), UV-C irradiation (250 nm, 25 min), and HHP (500 MPa, 8 min) were studied. Pools of milk from 17 women known to contain bacteria at >5 × 107 colony forming units (CFU)/L were collected from the Rogers Hixon Ontario Human Milk Bank and underwent each pasteurization technique. Macronutrients, heat-sensitive micronutrients (vitamin C, folate), and bioactive components [bile-salt-stimulated lipase (BSSL), lysozyme, lactoferrin] were measured in raw and pools of pasteurized milk. Milk was cultured to determine how well each technique produced a culture negative result (detection limit <1 × 103 CFU/L). RESULTS: Folate was reduced by 24-27% after Holder, flash-heating, and UV-C (P < 0.05); no reduction was observed after HHP. All pasteurization methods reduced vitamin C (60-75%, P < 0.001). BSSL was abolished after Holder and flash-heating (P < 0.001), reduced after UV-C (48%, P < 0.001), but unaffected by HHP. Lysozyme activity was reduced after flash-heating (44%) and UV-C (74%, P < 0.004) but unaffected by Holder or HHP. Lactoferrin was reduced by all methods (P < 0.02) but most severely by flash-heating (74%) and least severely by HHP (25%). Holder and UV-C reduced lactoferrin by ∼48%. All pasteurization methods reduced the number of culture positive DM samples (P < 0.001). CONCLUSIONS: HHP better preserves human milk composition than Holder pasteurization. Future research on the feasibility of HHP for pasteurizing human milk is warranted because its implementation may improve the nutritional status and health of DM-fed infants.


Hot Temperature , Hydrostatic Pressure , Milk Banks , Milk, Human/chemistry , Pasteurization/methods , Female , Humans , Nutrients
16.
Breastfeed Med ; 14(4): 271-275, 2019 05.
Article En | MEDLINE | ID: mdl-30789295

Background: Infant refusal to feed previously frozen human milk is thought possibly attributable to lipase, an enzyme that cleaves fatty acids from milk triglycerides potentially changing the taste of the milk. Previous reports suggest that this milk is not harmful to infants; however, the lipase activity, macronutrient content, concentration of free fatty acids (FFAs), pH, and bacterial load of milk that meets this criterion are not fully understood. Objective: The objective was to determine whether refused frozen milk is different in composition from typical milk deposits received at a human milk bank. Methods: Frozen milk deposits previously refused by mother's own infant were collected from 16 mothers at five different time points when available (postpartum days 30, 60, 90, 120, and 150). Lipase activity, macronutrient composition, levels of FFA, pH, and bacteriology were determined. Analysis of mature donor milk and bacteriology data from the Ontario milk bank were used as controls. Results: The lipase activity for all samples was at or below literature values for mature human milk and lower compared with control milk (p < 0.001) for all time periods except at day 30. Macronutrient composition was not different from control values and did not change significantly over 150 days, with the exception of crude protein, which declined with milk maturity (p < 0.005). The pH for all postpartum time groups was lower (p < 0.02) in refused milk, and was inversely associated with lipase activity and FFA. FFA and bacterial counts were not different from control samples. Conclusions: Infant refusal of previously frozen milk may not be entirely due to endogenous lipase activity. This milk appears suitable for donation to human milk banks.


Dietary Fats/analysis , Freezing , Milk Banks , Milk, Human/chemistry , Breast Feeding , Colony Count, Microbial , Female , Humans , Hydrogen-Ion Concentration , Infant , Infant, Newborn , Linear Models , Materials Testing , Milk Proteins/analysis , Milk, Human/microbiology , Mothers
...