RESUMEN
Histone methyltransferases (HMTs) are enzymes that regulate histone methylation and play an important role in controlling transcription by altering the chromatin structure. Aberrant activation of HMTs has been widely reported in certain types of neoplastic cells. Among them, G9a/EHMT2 and GLP/EHMT1 are crucial for H3K9 methylation, and their dysregulation has been associated with tumor initiation and progression in different types of cancer. More recently, it has been shown that G9a and GLP appear to play a critical role in several lymphoid hematologic malignancies. Importantly, the key roles played by both enzymes in various diseases made them attractive targets for drug development. In fact, in recent years, several groups have tried to develop small molecule inhibitors targeting their epigenetic activities as potential anticancer therapeutic tools. In this review, we discuss the physiological role of GLP and G9a, their oncogenic functions in hematologic malignancies of the lymphoid lineage, and the therapeutic potential of epigenetic drugs targeting G9a/GLP for cancer treatment.
RESUMEN
SMYD4 is a member of the SMYD family that has lysine methyltransferase function. Little is known about the roles of SMYD4 in cancer. The aim of this study is to investigate genetic alterations in the SMYD4 gene across the most prevalent solid tumors and determine its potential as a biomarker. We performed an integrative multi-platform analysis of the most common mutations, copy number alterations (CNAs), and mRNA expression levels of the SMYD family genes using cohorts available at the Cancer Genome Atlas (TCGA), cBioPortal, and the Catalogue of Somatic Mutations in Cancer (COSMIC). SMYD genes displayed a lower frequency of mutations across the studied tumors, with none of the SMYD4 mutations detected demonstrating sufficient discriminatory power to serve as a biomarker. In terms of CNAs, SMYD4 consistently exhibited heterozygous loss and downregulation across all tumors evaluated. Moreover, SMYD4 showed low expression in tumor samples compared to normal samples, except for stomach adenocarcinoma. SMYD4 demonstrated a frequent negative correlation with other members of the SMYD family and a positive correlation between CNAs and mRNA expression. Additionally, patients with low SMYD4 expression in STAD and LUAD tumors exhibited significantly poorer overall survival. SMYD4 demonstrated its role as a tumor suppressor in the majority of tumors evaluated. The consistent downregulation of SMYD4, coupled with its association with cancer progression, underscores its potential usefulness as a biomarker.
Asunto(s)
Mutación , Neoplasias , Humanos , Neoplasias/genética , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Variaciones en el Número de Copia de ADN , N-Metiltransferasa de Histona-Lisina/genéticaRESUMEN
The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed mononuclear complexes with a distorted square planar geometry and the metal centers coordinated with a doubly deprotonated dithiocarbazate ligand and coligand pyridine or triphenylphosphine. The non-covalent interactions were investigated by the Hirshfeld surface and the results revealed that the strongest interactions were πâ â â π stacking interactions and non-classical hydrogen bonds C-H···H and C-H···N. Physicochemical and spectroscopic methods indicate the same structures in the solid state and solution. The toxicity effects of the free ligands and Ni(II) complexes were tested on the human breast cancer cell line MCF-7 and non-malignant breast epithelial cell line MCF-10A. The half-maximal inhibitory concentration (IC50) values, indicating that the compounds were potent in inhibiting cell growth, were obtained for both cell lines at three distinct time points. While inhibitory effects were evident in both malignant and non-malignant cells, all three complexes demonstrated lower IC50 values for malignant breast cell lines than their non-malignant counterparts, suggesting a stronger impact on cancerous cell lines. Furthermore, molecular docking studies were performed showing the complex (2) as a promising candidate for further therapeutic exploration.
Asunto(s)
Antineoplásicos , Complejos de Coordinación , Simulación del Acoplamiento Molecular , Níquel , Humanos , Níquel/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ligandos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Línea Celular Tumoral , Cristalografía por Rayos X , Células MCF-7 , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Diseño de FármacosRESUMEN
Acute Lymphoblastic Leukemia (ALL) is the predominant hematological malignancy in pediatric populations, originating from B- or T-cell precursors within the bone marrow. The disease exhibits a high degree of heterogeneity, both at the molecular level and in terms of clinical presentation. A complex interplay between inherited and acquired genetic alterations contributes to disease pathogenesis, often resulting in the disruption of cellular functions integral to the leukemogenic process. The advent of CRISPR/Cas9 as a gene editing tool has revolutionized biological research, underscoring its potential to modify specific genomic loci implicated in cancer. Enhanced understanding of molecular alterations in ALL has facilitated significant advancements in therapeutic strategies. In this review, we scrutinize the application of CRISPR/Cas9 as a tool for identifying genetic targets to improve therapy, circumvent drug resistance, and facilitate CAR-T cell-based immunotherapy. Additionally, we discuss the challenges and future prospects of CRISPR/Cas9 applications in ALL.
RESUMEN
In the search for new metal complexes with antitumor potential, two dithiocarbazate ligands derived from 1,1,1-trifluoro-2,4-pentanedione (H2L1) and (H2L2) and four Ni(II) complexes, [Ni(L1)PPh3] (1), [Ni(L1)Py] (2), [Ni(L2)PPh3] (3), and [Ni(L2)Py] (4), were successfully synthesized and investigated by physical-chemistry and spectroscopic methods. The crystal structure of the H2L1 and the Ni(II) complexes has been elucidated by single-crystal X-ray diffraction. The obtained structure from H2L1 confirms the cyclization reaction and formation of the pyrazoline derivative. The results showed square planar geometry to the metal centers, in which dithiocarbazates coordinated by the ONS donor system and a triphenylphosphine or pyridine molecule complete the coordination sphere. Hirshfeld surface analysis by d norm function was investigated and showed π-π stacking interactions upon the molecular packing of H2L1 and non-classical hydrogen bonds for all compounds. Fingerprint plots showed the main interactions attributed to Hâ H Câ H, Oâ H, Brâ H, and Fâ H, with contacts contributing between 1.9% and 38.2%. The mass spectrometry data indicated the presence of molecular ions [M + H]+ and characteristic fragmentations of the compounds, which indicated the same behavior of the compounds in solution and solid state. Molecular docking simulations were studied to evaluate the properties and interactions of the free dithiocarbazates and their Ni(II) complexes with selected proteins and DNA. These results were supported by in vitro cytotoxicity assays against four cancer cell lines, showing that the synthesized metal complexes display promising biological activity.
RESUMEN
Telomeres and telomerase are closely linked to uncontrolled cellular proliferation, immortalization and carcinogenesis. Telomerase has been largely studied in the context of cancer, including leukemias. Deregulation of human telomerase gene hTERT is a well-established step in leukemia development. B-acute lymphoblastic leukemia (B-ALL) recovery rates exceed 90% in children; however, the relapse rate is around 20% among treated patients, and 10% of these are still incurable. This review highlights the biological and clinical relevance of telomerase for B-ALL and the implications of its canonical and non-canonical action on signaling pathways in the context of disease and treatment. The physiological role of telomerase in lymphocytes makes the study of its biomarker potential a great challenge. Nevertheless, many works have demonstrated that high telomerase activity or hTERT expression, as well as short telomeres, correlate with poor prognosis in B-ALL. Telomerase and related proteins have been proven to be promising pharmacological targets. Likewise, combined therapy with telomerase inhibitors may turn out to be an alternative strategy for B-ALL.
Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Telomerasa , Niño , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Acortamiento del Telómero , Telómero/genética , Telómero/metabolismoAsunto(s)
Metilación de ADN , Epigénesis Genética , Epigenómica , Humanos , Recuento de Leucocitos , LeucocitosRESUMEN
BACKGROUND: The inhibition of the enzyme telomerase (TERT) has been widely investigated as a new pharmacological approach for cancer treatment, but its real potential and the biochemical consequences are not totally understood. OBJECTIVE: Here, we investigated the effects of the telomerase inhibitor MST-312 on a human glioma cell line after both short- and long-term (290 days) treatments. METHODS: Effects on cell growth, viability, cell cycle, morphology, cell death and genes expression were assessed. RESULTS: We found that short-term treatment promoted cell cycle arrest followed by apoptosis. Importantly, cells with telomerase knock-down revealed that the toxic effects of MST-312 are partially TERT dependent. In contrast, although the long-term treatment decreased cell proliferation at first, it also caused adaptations potentially related to treatment resistance and tumor aggressiveness after long time of exposition. CONCLUSIONS: Despite the short-term effects of telomerase inhibition not being due to telomere erosion, they are at least partially related to the enzyme inhibition, which may represent an important strategy to pave the way for tumor growth control, especially through modulation of the non-canonical functions of telomerase. On the other hand, long-term exposure to the inhibitor had the potential to induce cell adaptations with possible negative clinical implications.
Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Telomerasa/antagonistas & inhibidores , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , HumanosRESUMEN
Background Heterodimeric methyltransferases GLP (EHMT1/KMT1D) and G9a (EHMT2/KMT1C) are two closely related enzymes that promote the monomethylation and dimethylation of histone H3 lysine 9. Dysregulation of their activity has been implicated in several types of human cancer. Patients and methods Here, in order to investigate whether GLP/G9a exerts any impact on Chronic Lymphocytic Leukemia (CLL), GLP/G9a expression levels were assessed in a cohort of 50 patients and the effects of their inhibition were verified for the viability of CLL cells. Also, qRT-PCR was used to investigate the transcriptional levels of GLP/G9a in CLL patients. In addition, patient samples were classified according to ZAP-70 protein expression by flow cytometry and according to karyotype integrity by cytogenetics analysis. Finally, a selective small molecule inhibitor for GLP/G9a was used to ascertain whether these methyltransferases influenced the viability of MEC-1 CLL cell lineage. Results mRNA analysis revealed that CLL samples had higher levels of GLP, but not G9a, when compared to non-leukemic controls. Interestingly, patients with unfavorable cytogenetics showed higher expression levels of GLP compared to patients with favorable karyotypes. More importantly, GLP/G9a inhibition markedly induced cell death in CLL cells. Conclusion Taken together, these results indicate that GLP is associated with a worse prognosis in CLL, and that the inhibition of GLP/G9a influences CLL cell viability. Altogether, the present data demonstrate that these methyltransferases can be potential markers for disease progression, as well as a promising epigenetic target for CLL treatment and the prevention of disease evolution.
Asunto(s)
Regulación Leucémica de la Expresión Génica , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Linfocítica Crónica de Células B/genética , Adulto , Anciano , Anciano de 80 o más Años , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Proteína Tirosina Quinasa ZAP-70/metabolismoRESUMEN
The aim of the present study was to identify cell types in primary culture from malignant and non-malignant effusions. Effusion samples were subjected to cytology and culture. Immunocytochemistry was performed in cytological slides to evaluate malignancy (positivity for malignancy markers) and in culture slides for identification of cell types in growth. A total of 143 effusion samples (pleural n=76; peritoneal n=37; pericardial n=4; and peritoneal lavage n=26) were analyzed. Cell growth was observed in 34.9% of all samples and immunocytochemistry for identification of cell types in culture slides was conclusive in 90% of them. In non-malignant samples (n=28), growth of mesothelial cells, macrophages and of both cell types was identified in 82.14, 10.71 and 7.14%, respectively. In malignant samples (n=17, all carcinomas), growth of malignant epithelial cells and of both malignant epithelial and mesothelial cells was identified in 41.17 and 23.52%, respectively. In the remaining 35.29% of malignant samples, the only cells in growth were mesothelial and/or macrophages instead of malignant epithelial cells. In conclusion, in culture of malignant effusions, mesothelial cells may be simultaneously identified with malignant epithelial cells. Besides, mesothelial cells and macrophages may be the only cells identified in malignant effusion culture. Therefore, a broad panel of cell markers should be used for unmistakable identification of cells in studies of effusion primary culture. The ideal malignant effusion sample to obtain culture of neoplastic cells should be that without the presence of mesothelial cells and macrophages.
Asunto(s)
Adenocarcinoma/genética , Citodiagnóstico , Mesotelioma/genética , Derrame Pleural Maligno/genética , Adenocarcinoma/patología , Líquido Ascítico/metabolismo , Líquido Ascítico/patología , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Linaje de la Célula/genética , Proliferación Celular/genética , Femenino , Humanos , Masculino , Mesotelioma/patología , Lavado Peritoneal , Derrame Pleural Maligno/patologíaRESUMEN
Chromosomal alterations are commonly detected in patients with chronic lymphocytic leukemia (CLL) and impact disease pathogenesis, prognosis, and progression. Telomerase expression (hTERT), its activity and the telomere length are other important predictors of survival and multiple outcomes in CLL. SUV39H and SUV420H enzymes are histone methyltransferases (HMTases) involved in several cellular processes, including regulation of telomere length, heterochromatin organization, and genome stability. Here, we investigated whether SUV39H1, SUV39H2, SUV420H1, SUV420H2, and hTERT are associated with genomic instability of CLL. SUV39H (1/2), SUV420H (1/2), and hTERT expression was determined in 59 CLL samples by real time PCR. In addition, ZAP-70 protein expression was evaluated by Flow Cytometry and patients' karyotype was defined by Cytogenetic Analysis. Low expression of SUV39H1 was associated with the acquisition of altered and complex karyotypes. Conversely, high expression of SUV39H2 correlated with cytogenetic abnormalities in CLL patients. The pattern of karyotypic alterations differed in samples with detectable or undetectable hTERT expression. Furthermore, hTERT expression in CLL showed a correlation with transcript levels of SUV39H2, which, in part, can explain the association between SUV39H2 expression and cytogenetic abnormalities. Moreover, SUV39H1 correlated with SUV420H1 expression while SUV420H2 was associated with all other investigated HMTases. Our data show that the differential expression of SUV39H1 and SUV39H2 is associated with genomic instability and that the modulation of these HMTases can be an attractive approach to prevent CLL evolution. Environ. Mol. Mutagen. 58:654-661, 2017. © 2017 Wiley Periodicals, Inc.
Asunto(s)
Inestabilidad Genómica/genética , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Linfocítica Crónica de Células B/genética , Metiltransferasas/genética , Proteínas Represoras/genética , Adulto , Anciano , Anciano de 80 o más Años , Aberraciones Cromosómicas , Femenino , Regulación Leucémica de la Expresión Génica , Humanos , Cariotipificación , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Persona de Mediana Edad , Pronóstico , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genéticaRESUMEN
Approximately 5% of human T-cell leukemia virus type 1 (HTLV-1)-infected individuals will develop one of the HTLV-1-related diseases, such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T-cell leukemia. However, the mechanisms responsible for the appearance of symptoms have not been fully clarified. It is believed that viral factors, host genetic and epigenetic mechanisms are implicated in this process. Studies have shown the involvement of histone methyltransferases in retrovirus infection, but no study observed their expression in HTLV-1-infected patients. Among them, euchromatic histone-lysine N-methyltransferase (EHMT)-1 and EHMT-2 were related to retroviral latency in HIV-1 infection. We investigated whether histone methyltransferases EHMT1 and EHMT2 exert any influence on HAM/TSP development by assessing their expression levels in CD4+ T-cells from HTLV-1-infected patients. CD4+ T-cells were immunomagnetically isolated from peripheral blood mononuclear cells of HTLV-1-infected or non-infected individuals and the expression levels of EHMT1 and EHMT2 were determined by RT-qPCR. We observed that EHMT2 was negatively regulated in HTLV-1 asymptomatic carriers compared to non-infected individuals. No difference was observed for EHMT1. These results suggest that EHMT2 downregulation in CD4+ T-cells may be linked to a protection mechanism against the development of HAM/TSP.
Asunto(s)
Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Virus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical/genética , Paraparesia Espástica Tropical/virología , Adulto , Linfocitos T CD4-Positivos , Femenino , Regulación Enzimológica de la Expresión Génica , Predisposición Genética a la Enfermedad , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Persona de Mediana EdadRESUMEN
SET and MYND domain containing 2 (SMYD2) and the SET and MYND domain containing 3 (SMYD3) are the most studied and well-characterized members of SMYD family. It has been demonstrated that their altered expression is associated with the progression of several solid tumors. Nevertheless, whether these methyltransferases exert any impact in chronic lymphocytic leukemia (CLL) remains unknown. Here, we investigated the gene expression profile of SMYD2 and SMYD3 in 59 samples of CLL and 10 normal B cells. The obtained results were associated with white blood cells (WBC) and platelet counts, ZAP-70 protein expression, and cytogenetic analysis. We found that SMYD2 and SMYD3 are overexpressed in CLL patients and, interestingly, patients with residual expression of both genes presented a high WBC count and complex karyotype. Furthermore, a strong correlation between SMYD2 and SMYD3 gene expression was unveiled. Our data demonstrate the association of a residual expression of SMYD2 and SMYD3 with CLL progression indicators and suggests both genes are regulated by a common transcriptional control in this type of cancer. These results may provide the basis for the development of new therapeutic strategies to prevent CLL progression.
Asunto(s)
Biomarcadores de Tumor/genética , Aberraciones Cromosómicas , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Linfocítica Crónica de Células B/genética , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Cariotipificación , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Larynx cancer is the second most common type of cancer among all head and neck cancers. Deregulation of epigenetic effectors, including altered expression of histone methyltransferases from the MLL (mixed lineage leukemia) family, have been reported in many cancer types, yet little is known concerning their involvement in larynx cancer. Our objective was to determine the expression profile of MLL genes in larynx carcinoma and normal adjacent tissues and correlate this profile to tumor characteristics. We analyzed the expression profile of 5 MLL genes in 13 cases of larynx carcinoma and their adjacent non-tumor tissues using quantitative real-time PCR. MLL3 was significantly downregulated in tumor samples compared to their normal counterparts, and all MLL genes showed decreased expression in advanced tumors compared to tumors in the initial stage. Altered expression in a single MLL gene was associated with a similar alteration in the other MLL genes, revealing a strong correlation of expression in each individual patient. In conclusion, MLL genes may have similar transcriptional control, and decreased expression of these genes may contribute to larynx cancer progression.
Asunto(s)
Carcinoma de Células Escamosas/genética , Regulación Neoplásica de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/genética , Neoplasias Laríngeas/genética , Metiltransferasas/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Anciano , Anciano de 80 o más Años , Regulación hacia Abajo/genética , Epigénesis Genética/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Transcripción Genética/genéticaRESUMEN
EZH2, a histone methyltransferase, is overexpressed in several human tumors, but whether it exerts any impact in chronic lymphocytic leukemia (CLL) remains unknown. We used real time PCR to investigate the expression profile of EZH1 and EZH2 in 59 CLL patients, 10 samples of purified B-cells from healthy donors and 12 normal adult tissues. EZH2 was overexpressed in CLL patients and correlates with high white blood cell count, ZAP-70 expression and chromosomal abnormalities. EHZ1 expression does not correlate with CLL progression. EZH2 overexpression is related to a poor prognosis of CLL and could be a useful tool to assess its aggressiveness.
Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/enzimología , Complejo Represivo Polycomb 2/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína Tirosina Quinasa ZAP-70/biosíntesisRESUMEN
Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. Although several clinical characteristics can be associated with worse prognosis, more robust biological markers still remains uncovered. SMYD2, a member of SMYD protein family, regulates the activity of several proteins through methylation. In this study, we performed quantitative real time PCR to compare the expression of SMYD2 in 83 pediatric ALL patients and non-neoplastic bone marrow samples (BMS). The study revealed that SMYD2 expression is altered in ALL BMS and its high expression was correlated with a bad prognosis. Moreover, we also revealed that SMYD2 expression level significantly decreases in patients that respond to chemotherapy treatment.