Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1342180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567075

RESUMEN

Introduction: Lactic acid bacteria (LAB) communities shape the sensorial and functional properties of artisanal hard-cooked and long-ripened cheeses made with raw bovine milk like Parmigiano Reggiano (PR) cheese. While patterns of microbial evolution have been well studied in PR cheese, there is a lack of information about how this microbial diversity affects the metabolic and functional properties of PR cheese. Methods: To fill this information gap, we characterized the cultivable fraction of natural whey starter (NWS) and PR cheeses at different ripening times, both at the species and strain level, and investigated the possible correlation between microbial composition and the evolution of peptide profiles over cheese ripening. Results and discussion: The results showed that NWS was a complex community of several biotypes belonging to a few species, namely, Streptococcus thermophilus, Lactobacillus helveticus, and Lactobacillus delbrueckii subsp. lactis. A new species-specific PCR assay was successful in discriminating the cheese-associated species Lacticaseibacillus casei, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and Lacticaseibacillus zeae. Based on the resolved patterns of species and biotype distribution, Lcb. paracasei and Lcb. zeae were most frequently isolated after 24 and 30 months of ripening, while the number of biotypes was inversely related to the ripening time. Peptidomics analysis revealed more than 520 peptides in cheese samples. To the best of our knowledge, this is the most comprehensive survey of peptides in PR cheese. Most of them were from ß-caseins, which represent the best substrate for LAB cell-envelope proteases. The abundance of peptides from ß-casein 38-88 region continuously increased during ripening. Remarkably, this region contains precursors for the anti-hypertensive lactotripeptides VPP and IPP, as well as for ß-casomorphins. We found that the ripening time strongly affects bioactive peptide profiles and that the occurrence of Lcb. zeae species is positively linked to the incidence of eight anti-hypertensive peptides. This result highlighted how the presence of specific LAB species is likely a pivotal factor in determining PR functional properties.

2.
Food Chem ; 447: 138938, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38458130

RESUMEN

The chemical composition of Parmigiano Reggiano (PR) hard cheese can be significantly affected by different factors across the dairy supply chain, including ripening, altimetric zone, and rind inclusion levels in grated hard cheeses. The present study proposes an untargeted metabolomics approach combined with machine learning chemometrics to evaluate the combined effect of these three critical parameters. Specifically, ripening was found to exert a pivotal role in defining the signature of PR cheeses, with amino acids and lipid derivatives that exhibited their role as key discriminant compounds. In parallel, a random forest classifier was used to predict the rind inclusion levels (> 18%) in grated cheeses and to authenticate the specific effect of altimetry dairy production, achieving a high prediction ability in both model performances (i.e., ∼60% and > 90%, respectively). Overall, these results open a novel perspective to identifying quality and authenticity markers metabolites in cheese.


Asunto(s)
Queso , Metabolómica , Aminoácidos
3.
Front Nutr ; 11: 1327301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379551

RESUMEN

The aims of this proof of principle study were to compare two different chemometric approaches using a Bayesian method, Partial Least Square (PLS) and PLS-discriminant analysis (DA), for the prediction of the chemical composition and texture properties of the Grana Padano (GP) and Parmigiano Reggiano (PR) PDO cheeses by using NIR and Raman spectra and quantify their ability to distinguish between the two PDO and among their ripening periods. For each dairy chain consortium, 9 cheese samples from 3 dairy industries were collected for a total of 18 cheese samples. Three seasoning times were chosen for each dairy industry: 12, 20, and 36 months for GP and 12, 24, and 36 months for PR. A portable NIR instrument (spectral range: 950-1,650 nm) was used on 3 selected spots on the paste of each cheese sample, for a total of 54 spectra collected. An Alpha300 R confocal Raman microscope was used to collect 10 individual spectra for each cheese sample in each spot for a total of 540 Raman spectra collected. After the detection of eventual outliers, the spectra were also concatenated together (NIR + Raman). All the cheese samples were assessed in terms of chemical composition and texture properties following the official reference methods. A Bayesian approach and PLS-DA were applied to the NIR, Raman, and fused spectra to predict the PDO type and seasoning time. The PLS-DA reached the best performances, with 100% correctly identified PDO type using Raman only. The fusion of the data improved the results in 60% of the cases with the Bayesian and of 40% with the PLS-DA approach. A Bayesian approach and a PLS procedure were applied to the NIR, Raman, and fused spectra to predict the chemical composition of the cheese samples and their texture properties. In this case, the best performance in validation was reached with the Bayesian method on Raman spectra for fat (R2VAL = 0.74). The fusion of the data was not always helpful in improving the prediction accuracy. Given the limitations associated with our sample set, future studies will expand the sample size and incorporate diverse PDO cheeses.

4.
Sci Rep ; 12(1): 17322, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243881

RESUMEN

Natural whey starters (NWS) are undefined bacterial communities produced daily from whey of the previous cheese-making round, by application of high temperature. As a result, in any dairy plant, NWS are continuously evolving, undefined mixtures of several strains and/or species of lactic acid bacteria, whose composition and performance strongly depend on the selective pressure acting during incubation. While NWS is critical to assure consistency to cheese-making process, little is known about the composition, functional features, and plant-to-plant fluctuations. Here, we integrated 16S rRNA metabarcoding and culture-dependent methods to profile bacterial communities of 10 NWS sampled in the production area of Parmigiano Reggiano cheese. 16S rRNA metabarcoding analysis revealed two main NWS community types, namely NWS type-H and NWS type-D. Lactobacillus helveticus was more abundant in NWS type-H, whilst Lactobacillus delbrueckii/St. thermophilus in NWS type-D, respectively. Based on the prediction of metagenome functions, NWS type-H samples were enriched in functional pathways related to galactose catabolism and purine metabolism, while NWS type-D in pathways related to aromatic and branched chain amino acid biosynthesis, which are flavor compound precursors. Culture-dependent approaches revealed low cultivability of individual colonies as axenic cultures and high genetic diversity in the pool of cultivable survivors. Co-culturing experiments showed that fermentative performance decreases by reducing the bacterial complexity of inoculum, suggesting that biotic interactions and cross-feeding relationships could take place in NWS communities, assuring phenotypic robustness. Even though our data cannot directly predict these ecological interactions, this study provides the basis for experiments targeted at understanding how selective regime affects composition, bacterial interaction, and fermentative performance in NWS.


Asunto(s)
Microbiología de Alimentos , Lactobacillus , Aminoácidos de Cadena Ramificada , Bacterias/genética , Galactosa , Lactobacillus/genética , Purinas , ARN Ribosómico 16S/genética , Suero Lácteo , Proteína de Suero de Leche
5.
Foods ; 11(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35053903

RESUMEN

The concentrations of four health-related trace elements were measured using Atomic Absorption Spectroscopy in long-ripened (24- and 40-months) Parmigiano Reggiano (PR) PDO cheese, obtained from both summer and winter milk. To date, there are limited data on PR trace element concentrations, and no data about long-ripened cheese, especially when ripened for 40 months. Thus, the aim of this investigation is to determine chromium, manganese, selenium, and zinc concentrations, improving the available data on these trace elements and increasing knowledge of the biological properties of PR linked to their content in this cheese. The results show that 40-month ripened PR is a source of selenium and chromium, according to definitions under the European Regulation 1924/2006, as a 30 g cheese portion contains 11 ± 2 µg (summer milk) and 10 ± 1 µg (winter milk) of selenium and 8 ± 1 µg (summer and winter milk) of chromium, providing in excess of 8.25 and 6 µg per portion, respectively. This represents 15% of nutrient reference intake values for adults. These findings allow for the claim to be made that PR possesses the health properties ascribed to food sources of selenium and chromium according to European Regulation 432/2012.

6.
Microorganisms ; 9(11)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34835414

RESUMEN

Whey is the main byproduct of the dairy industry and contains sugars (lactose) and proteins (especially serum proteins and, at lesser extent, residual caseins), which can be valorized by the fermentative action of yeasts. In the present study, we characterized the spoilage yeast population inhabiting natural whey starter (NWS), the undefined starter culture of thermophilic lactic acid bacteria used in Parmigiano Reggiano (PR) cheesemaking, and evaluated thermotolerance, mating type, and the aptitude to produce ethanol and bioactive peptides from whey lactose and proteins, respectively, in a selected pool of strains. PCR-RFLP assay of ribosomal ITS regions and phylogenetic analysis of 26S rDNA D1/D2 domains showed that PR NWS yeast population consists of the well-documented Kluyveromyces marxianus, as well as of other species (Saccharomyces cerevisiae, Wickerhamiella pararugosa, and Torulaspora delbrueckii), with multiple biotypes scored within each species as demonstrated by (GTG)5-based MSP-PCR. Haploid and diploid K. marxianus strains were identified through MAT genotyping, while thermotolerance assay allowed the selection of strains suitable to grow up to 48 °C. In whey fermentation trials, one thermotolerant strain was suitable to release ethanol with a fermentation efficiency of 86.5%, while another candidate was able to produce the highest amounts of both ethanol and bioactive peptides with potentially anti-hypertensive function. The present work demonstrated that PR NWS is a reservoir of ethanol and bioactive peptides producer yeasts, which can be exploited to valorize whey, in agreement with the principles of circularity and sustainability.

7.
Food Res Int ; 149: 110654, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600656

RESUMEN

Parmigiano Reggiano is a hard cheese with a Protected Designation of Origin (PDO) certification that also applies to the grated product. The percentage of rind in grated Parmigiano Reggiano is regulated by the PDO production Specification and must not exceed the limit of 18% (w/w). The present study evaluates the potential of an untargeted foodomics approach to detect anomalous inclusions of rind in grated Parmigiano Reggiano cheese. In particular, a combined metabolomics and peptidomics approach was used to detect potential markers of counterfeits (rind > 18%). In the framework of realistic food integrity purposes, non-Parmigiano Reggiano grated samples and different ripening times were also considered. Untargeted metabolomics allowed detecting 347 compounds, with a prevalence of amino acids and peptide derivatives, followed by fatty acyls and other compounds (such as lactones, ketones, and aldehydes) typically related to proteolysis and lipolysis events. Overall, the unsupervised multivariate statistics showed that the ripening time plays a hierarchically higher impact than rind inclusion in determining the main differences in the chemical profiles detected. Interestingly, supervised statistics highlighted distinctive markers for ripening time and rind inclusion, with only 16 common discriminant compounds being shared between the two conditions. The best markers of rind inclusion > 18% were 2-hydroxyadenine (VIP score = 1.937; AUC value = 0.83) and the amino acid derivatives argininic acid (VIP score = 1.462; AUC value = 0.75) and 5-hydroxyindole acetaldehyde (VIP score = 1.710; AUC value = 0.86). Interestingly, the medium-chain aldehyde 4-hydroperoxy-2-nonenal was a common marker of both ripening time and anomalous rind inclusion (>18%), likely arising from the lipid oxidation processes. Finally, among potential marker peptides of rind inclusion, the alpha-S1 casein proteolytic product (F)FVAPFPEVFGK(E) could be identified.


Asunto(s)
Queso , Aminoácidos , Metabolómica , Péptidos
8.
J Agric Food Chem ; 69(37): 11026-11032, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34498864

RESUMEN

Cyclopropane fatty acids (CPFA) were found in milk fat from cows fed maize silage and suggested to be synthesized by lactic acid bacteria during ensiling. This study aimed to elucidate some gaps of knowledge about the microbial synthesis of CPFA, to strengthen the current authentication method based on their detection in cheese fat and performed for Parmigiano Reggiano (UNI11650), whose Specifications forbid the use of silage. CPFA were screened in different ensiled cows' feeding by gas chromatography-mass spectrometry, and the effect of feed ingredients and ruminal digestion on CPFA microbial production were further examined by in vitro tests. Results showed that solely the environmental conditions developed in silos for specific plant materials (e.g., maize) are essential for the bacterial synthesis of CPFA, whereas rumen activity did not affect CPFA levels in feeds. This supports the suitability of using CPFA as biomarkers of a crop silage-based diet forbidden by certain PDO feedstock regulations.


Asunto(s)
Alimentación Animal , Rumen , Alimentación Animal/análisis , Animales , Bovinos , Ciclopropanos , Dieta , Digestión , Ácidos Grasos , Fermentación , Lactancia , Leche , Rumen/metabolismo , Ensilaje/análisis , Zea mays
9.
Biology (Basel) ; 10(6)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205680

RESUMEN

Inhibition of key metabolic enzymes linked to type-2-diabetes (T2D) by food-derived compounds is a preventive emerging strategy in the management of T2D. Here, the impact of Parmigiano-Reggiano (PR) cheese peptide fractions, at four different ripening times (12, 18, 24, and 30 months), on the enzymatic activity of α-glucosidase, α-amylase, and dipeptidyl peptidase-IV (DPP-IV) as well as on the formation of fluorescent advanced glycation end-products (fAGEs) was assessed. The PR peptide fractions were able to inhibit the selected enzymes and fAGEs formation. The 12-month-ripening PR sample was the most active against the three enzymes and fAGEs. Mass spectrometry analysis enabled the identification of 415 unique peptides, 54.9% of them common to the four PR samples. Forty-nine previously identified bioactive peptides were found, mostly characterized as angiotensin-converting enzyme-inhibitors. The application of an integrated approach that combined peptidomics, in silico analysis, and a structure-activity relationship led to an efficient selection of 6 peptides with potential DPP-IV and α-glucosidase inhibitory activities. Peptide APFPE was identified as a potent novel DPP-IV inhibitor (IC50 = 49.5 ± 0.5 µmol/L). In addition, the well-known anti-hypertensive tripeptide, IPP, was the only one able to inhibit the three digestive enzymes, highlighting its possible new and pivotal role in diabetes management.

10.
Biology (Basel) ; 9(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708820

RESUMEN

Proteolysis degree, biological activities, and water-soluble peptide patterns were evaluated in 12 month-ripened Parmigiano Reggiano (PR) cheeses collected in different dairy farms and showing different salt and fat content. Samples classified in high-salt and high-fat group (HH) generally showed lower proteolysis degree than samples having low-salt and low-fat content (LL). This positive correlation between salt/fat reduction and proteolysis was also confirmed by the analysis of biological activities, as the LL group showed higher average values of angiotensin-converting enzyme (ACE)-inhibitory and antioxidant activities. UHPLC/HR-MS allowed the identification of 805 unique peptides: LL and HH groups shared 59.3% of these peptides, while 20.9% and 19.9% were LL and HH specific, respectively. Frequency analysis of peptides identified a core of 183 peptides typical of 12-month ripened PR cheeses (corresponding to the 22.7% of total peptides), but no significant differences were detected in peptide patterns between LL and HH groups. Forty bioactive peptides, including 18 ACE-inhibitors and 12 anti-microbial peptides, were identified, of which 25 firstly found in PR cheese. Globally, this work contributed to unraveling the potentially healthy benefits of peptides fraction in PR cheese and provided prior evidence that PR with reduced fat/salt content showed the highest antihypertensive and antioxidant activities.

11.
Int J Food Microbiol ; 330: 108688, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32497940

RESUMEN

The impact of salt and fat intake on human health drives the consumer's attention towards dairy food with reduced salt and fat contents. How changes in salt and fat content modulate dairy LAB population and the associated proteolytic activities have been poorly studied. Here, non-starter LAB populations from 12 Parmigiano Reggiano (PR) cheeses (12-month ripened), clustered in low salt and fat content (LL-PR) and high salt and fat content (HH-PR) groups, were investigated and identified at specie-level with molecular assays. Lactobacillus rhamnosus was dominant in HH-PR samples, whereas Lactobacillus paracasei in LL-PR samples. (GTG)5 rep-PCR analysis discriminated 11 and 12 biotypes for L. rhamnosus and L. paracasei isolates, respectively. Screening for proteolytic activity identified L. rhamnosus strains more proteolytic than L. paracasei, and, within L. rhamnosus species, HH-PR strains were generally more proteolytic than LL-PR strains. Two L. rhamnosus representatives, namely strain 0503 from LL-PR and strain 2006 from HH-PR, were functionally characterized in cow milk fermentation assay. HH-PR strain 2006 overcame LL-PR strain 0503 in acidification performance, leading to a fermented milk with higher angiotensin I-converting enzyme inhibitory and antioxidant activities. L. rhamnosus 2006 was more prone to release VPP, while L. rhamnosus 0503 released higher amount of IPP. This study provides evidences that salt/fat content affects NSLAB cultivable fraction and the associated proteolytic ability resulting in a complex occurrence of bioactive peptides featuring health-promoting properties.


Asunto(s)
Antihipertensivos/metabolismo , Queso/microbiología , Lactobacillus/aislamiento & purificación , Péptidos/metabolismo , Cloruro de Sodio/análisis , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Animales , Antioxidantes/metabolismo , Queso/análisis , Grasas/análisis , Fermentación , Lactobacillus/clasificación , Lactobacillus/metabolismo , Leche/química , Leche/microbiología
12.
Ital J Food Saf ; 5(1): 5291, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-27800427

RESUMEN

This study investigated aflatoxin B1 (AFB1) contamination in dairy cow feed and the risk management of AFB1 content in concentrates undertaken by feed industries in the Parmigiano Reggiano area. Data on aflatoxin contamination risk management applied in 29 feed industries were collected and the AFB1 content of 70 feed samples was analysed. Data were collected within the framework of a quality control programme promoted by the Parmigiano Reggiano Consortium in 2013 and 2014. Audit results showed that the control procedures to prevent AFB1 contamination mainly focused on maize and its by-products. AFB1 concentration resulted lower than 5 ppb [legal European Union (EU) limit] in all samples; in one out of 70 samples, AFB1 content was 3.8 ppb and in all the other samples it was lower than 3 ppb. Results showed that AFB1 risk management applied by Italian feed industries effectively monitors AFB1 levels in feed below the EU legal limit.

13.
Ital J Food Saf ; 4(2): 5174, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-27800399

RESUMEN

Gossypol is a yellow pigment occurring in all parts of cotton plants, with the highest levels found in seeds, and it exhibits a variety of toxic effects. Few data are available on the content of gossypol in the commercial complementary feed and in feed raw materials. The present study was focused on the investigation of the presence of free gossypol in commercial complementary feed not containing cotton. A total of 50 samples of commercial complementary feed for dairy cows were performed in 29 feed mills both using and not using cotton as feed material. The free gossypol contamination resulted under the detection limit of the technique (4 mg/kg) in 12 out of 50 samples analysed and ranged from 4 to 20 mg/kg in 28 samples. In 10 samples the level of free gossypol ranged from 20 to 29.5 mg/kg. Average contamination of samples was 12.2±9.2 SD mg/kg. No significant difference (P=0.571) was shown in free gossypol concentration between feed produced in cotton free plants and in plants where cotton is used as feed material. Free gossypol content detected in the present study allows considering complementary feed for dairy cows not at risk. On the other hand, the detection of free gossypol in cotton free complementary feed, probably attributable to cross contamination of feed materials upstream of the feed mill, should be further investigated.

14.
Artículo en Inglés | MEDLINE | ID: mdl-24846792

RESUMEN

The presence of aflatoxin M1 (AFM1) in milk was assessed in Italy in the framework of designing a monitoring plan actuated by the milk industry in the period 2005-10. Overall, 21,969 samples were taken from tankers collecting milk from 690 dairy farms. The milk samples were representative of the consignments of co-mingled milk received from multiple (two to six) farms. Systematic, biweekly sampling of consignments involved each of the 121 districts (70 in the North, 17 in the Central and 34 in the South regions of Italy). AFM1 concentration was measured using an enzyme-linked immunoassay method (validated within the range of 5-100 ng kg(-1)) whereas an HPLC method was used for the quantification of levels in the samples that had concentrations higher than 100 ng kg(-1). Process control charts using data collected in three processing plants illustrate, as an example, the seasonal variation of the contamination. The mean concentration of AFM1 was in the range between 11 and 19 ng kg(-1). The 90th and 99th percentile values were 19-34 and 41-91 ng kg(-1), respectively, and values as high as 280 ng kg(-1) were reached in 2008. The number of non-compliant consignments (those with an AFM1 concentration above the statutory limit of 50 ng kg(-1)) varied between 0.3% and 3.1% per year, with peaks in September, after the maize harvest season. The variability between different regions was not significant. The results show that controlling the aflatoxins in feed at farm level was inadequate, consequently screening of raw milk prior to processing was needed. The evaluation of the AFM1 contamination level observed during a long-term period can provide useful data for defining the frequency of sampling.


Asunto(s)
Aflatoxina M1/análisis , Contaminación de Alimentos/análisis , Leche/química , Aflatoxina M1/toxicidad , Alimentación Animal/análisis , Alimentación Animal/toxicidad , Animales , Carcinógenos Ambientales/análisis , Carcinógenos Ambientales/toxicidad , Bovinos , Industria Lechera/normas , Interpretación Estadística de Datos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/estadística & datos numéricos , Industria de Alimentos/normas , Microbiología de Alimentos , Humanos , Italia , Leche/toxicidad , Control de Calidad , Conducta de Reducción del Riesgo , Zea mays/microbiología
15.
Meat Sci ; 90(2): 502-6, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21906889

RESUMEN

The aim of the study was to establish whether the visual cleanliness of cattle slaughtered was correlated to hide and carcass contamination as indicated by aerobic colony count (ACC), Enterobacteriaceae count (EC) and Escherichia coli count (ECC). Cattle in a slaughterhouse were visually inspected and assigned to a category from 1 (very clean) to 5 (very dirty) based on cleanliness. Fifteen animals for each category were randomly selected, hide and carcass sampled and analyzed for ACC, EC and ECC. Results showed that increasing dirt on cattle was associated with higher ACC, EC and ECC on hide and carcasses. Carcass ACC and ECC belonging to animals classified in cleanliness categories 3, 4 or 5 have a higher probability of exceeding the limits set by the Reg. EU 2073/2005. The study supports the conclusion that the pre-slaughter visual evaluation of animal cleanliness and application of corrective actions can be an effective aid to reduce carcass contamination.


Asunto(s)
Mataderos/normas , Contaminación de Alimentos/análisis , Carne , Animales , Bovinos , Recuento de Colonia Microbiana , Enterobacteriaceae , Escherichia coli , Microbiología de Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...