Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Gastro Hep Adv ; 3(1): 67-77, 2024.
Article En | MEDLINE | ID: mdl-38292457

BACKGROUND AND AIMS: Chronic liver injury that results in cirrhosis and end-stage liver disease (ESLD) causes more than 1 million deaths annually worldwide. Although the impact of genetic factors on the severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-related liver disease (ALD) has been previously studied, their contribution to the development of ESLD remains largely unexplored. METHODS: We genotyped 6 MASLD-associated polymorphisms in healthy (n = 123), metabolic dysfunction-associated steatohepatitis (MASH) (n = 145), MASLD-associated ESLD (n = 72), and ALD-associated ESLD (n = 57) cohorts and performed multinomial logistic regression to determine the combined contribution of genetic, demographic, and clinical factors to the progression of ESLD. RESULTS: Distinct sets of factors are associated with the progression to ESLD. The PNPLA3 rs738409:G and TM6SF2 rs58542926:T alleles, body mass index (BMI), age, and female sex were positively associated with progression from a healthy state to MASH. The PNPLA3 rs738409:G allele, age, male sex, and having type 2 diabetes mellitus were positively associated, while BMI was negatively associated with progression from MASH to MASLD-associated ESLD. The PNPLA3 rs738409:G and GCKR rs780094:T alleles, age, and male sex were positively associated, while BMI was negatively associated with progression from a healthy state to ALD-associated ESLD. The findings indicate that the PNPLA3 rs738409:G allele increases susceptibility to ESLD regardless of etiology, the TM6SF2 rs58542926:T allele increases susceptibility to MASH, and the GCKR rs780094:T allele increases susceptibility to ALD-associated ESLD. CONCLUSION: The PNPLA3, TM6SF2, and GCKR minor alleles influence the progression of MASLD-associated or ALD-associated ESLD. Genotyping for these variants in MASLD and ALD patients can enhance risk assessment, prompting early interventions to prevent ESLD.

2.
Hepatology ; 72(1): 257-270, 2020 07.
Article En | MEDLINE | ID: mdl-31715015

BACKGROUND AND AIMS: The gap between patients on transplant waiting lists and available donor organs is steadily increasing. Human organoids derived from leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5)-positive adult stem cells represent an exciting new cell source for liver regeneration; however, culturing large numbers of organoids with current protocols is tedious and the level of hepatic differentiation is limited. APPROACH AND RESULTS: Here, we established a method for the expansion of large quantities of human liver organoids in spinner flasks. Due to improved oxygenation in the spinner flasks, organoids rapidly proliferated and reached an average 40-fold cell expansion after 2 weeks, compared with 6-fold expansion in static cultures. The organoids repopulated decellularized liver discs and formed liver-like tissue. After differentiation in spinner flasks, mature hepatocyte markers were highly up-regulated compared with static organoid cultures, and cytochrome p450 activity reached levels equivalent to hepatocytes. CONCLUSIONS: We established a highly efficient method for culturing large numbers of LGR5-positive stem cells in the form of organoids, which paves the way for the application of organoids for tissue engineering and liver transplantation.


Cell Culture Techniques , Cell Proliferation , Hepatocytes/cytology , Liver Regeneration , Liver Transplantation , Organoids/cytology , Receptors, G-Protein-Coupled/biosynthesis , Stem Cells/metabolism , Tissue Engineering , Cell Differentiation , Cells, Cultured , Humans
3.
Differentiation ; 106: 49-56, 2019.
Article En | MEDLINE | ID: mdl-30878881

The liver stem cell niche is a specialized and dynamic microenvironment with biomechanical and biochemical characteristics that regulate stem cell behavior. This is feasible due to the coordination of a complex network of secreted factors, small molecules, neural, blood inputs and extracellular matrix (ECM) components involved in the regulation of stem cell fate (self-renewal, survival, and differentiation into more mature phenotypes like hepatocytes and cholangiocytes). In this review, we describe and summarize all the major components that play essential roles in the liver stem cell niche, in particular, growth factor signaling and the biomechanical properties of the ECM.


Disease , Extracellular Matrix/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Stem Cells/cytology , Animals , Cell Differentiation , Cell Lineage , Humans , Signal Transduction , Stem Cells/metabolism
4.
Adv Exp Med Biol ; 1077: 421-449, 2018.
Article En | MEDLINE | ID: mdl-30357702

Naturally-derived biomaterials have been used for decades in multiple regenerative medicine applications. From the simplest cell microcarriers made of collagen or alginate, to highly complex decellularized whole-organ scaffolds, these biomaterials represent a class of substances that is usually first in choice at the time of electing a functional and useful biomaterial. Hence, in this chapter we describe the several naturally-derived biomaterials used in tissue engineering applications and their classification, based on composition. We will also describe some of the present uses of the generated tissues like drug discovery, developmental biology, bioprinting and transplantation.


Biocompatible Materials , Tissue Engineering , Bioprinting , Developmental Biology , Drug Discovery , Extracellular Matrix , Humans , Regenerative Medicine , Tissue Scaffolds , Transplantation
5.
Biotechnol Bioeng ; 115(11): 2807-2816, 2018 11.
Article En | MEDLINE | ID: mdl-29959867

Direct reprogramming represents an easy technique to generate induced hepatocytes (iHeps) from somatic cells. However, current protocols are accompanied by several drawbacks as iHeps are heterogenous and lack fully mature phenotypes of primary hepatocytes. Here, we established a polycistronic expression system to induce the direct reprogramming of mouse embryonic fibroblasts towards hepatocytes. The resulting iHeps are homogenous and display key properties of primary hepatocytes, such as expression of hepatocyte markers, albumin secretion, and presence of liver transaminases. iHeps also possess the capacity to repopulate decellularized liver tissue and exhibit enhanced hepatic maturation. As such, we present a novel strategy to generate homogenous and functional iHeps for applications in tissue engineering and cell therapy.


Cell Transplantation/methods , Cellular Reprogramming Techniques/methods , Fibroblasts/physiology , Hepatocytes/physiology , Animals , Cell Differentiation , Gene Expression Regulation , Liver Diseases/therapy , Mice
6.
Methods Mol Biol ; 1577: 293-305, 2018.
Article En | MEDLINE | ID: mdl-29101678

Currently, due to the progress made in the field of regenerative medicine, whole-organ bioengineering is becoming a valid alternative to cope with the shortages of organs for transplantation. In this chapter, we describe the main techniques carried out for pig liver bioengineering, which serves as an essential model for future human liver bioengineering. These include porcine whole-liver decellularization, endothelial and mesenchymal stem cell isolation, porcine ES-derived hepatoblasts, and scaffold recellularization using a bioreactor perfusion system.


Liver/chemistry , Liver/cytology , Perfusion/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Bioreactors , Cell Separation/methods , Cells, Cultured , Endothelial Cells/cytology , Hepatocytes/cytology , Liver/anatomy & histology , Liver Regeneration , Mesenchymal Stem Cells/cytology , Swine , Umbilical Cord/cytology
...