Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 86(2): 1447-1452, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36409329

RESUMEN

Methane (CH4) oxidation by methanotrophic bacteria in forest soils is the largest biological sink for this greenhouse gas on earth. However, the compaction of forest soils by logging traffic has previously been shown to reduce the potential rate of CH4 uptake. This change could be due to not only a decrease of methanotrophs but also an increase in methanogen activity. In this study, we investigated whether the decrease in CH4 uptake by forest soils, subjected to compaction by heavy machinery 7 years earlier, can be explained by quantitative and qualitative changes in methanogenic and methanotrophic communities. We measured the functional gene abundance and polymorphism of CH4 microbial oxidizers (pmoA) and producers (mcrA) at different depths and during different seasons. Our results revealed that the soil compaction effect on the abundance of both genes depended on season and soil depth, contrary to the effect on gene polymorphism. Bacterial pmoA abundance was significantly lower in the compacted soil than in the controls across all seasons, except in winter in the 0-10 cm depth interval and in summer in the 10-20 cm depth interval. In contrast, archaeal mcrA abundance was higher in compacted than control soil in winter and autumn in the two soil depths investigated. This study shows the usefulness of using pmoA and mcrA genes simultaneously in order to better understand the spatial and temporal variations of soil CH4 fluxes and the potential effect of physical disturbances.


Asunto(s)
Euryarchaeota , Suelo , Estaciones del Año , Bacterias/genética , Oxidación-Reducción , Bosques , Metano , Microbiología del Suelo
2.
Methods Mol Biol ; 2014: 145-151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31197793

RESUMEN

The difference in time lags between a labeling pulse of 13CO2 of the foliage and the appearance of labeled C in the respiration at different locations along the stem of a tall plant is used to estimate at which velocities the isotope tracer, i.e., the labeled carbohydrates, are transported in the phloem sap. Here we describe a method for pulse-labeling tall plants in the field and subsequently tracing 13C in the respiratory efflux of CO2.


Asunto(s)
Isótopos de Carbono , Floema/metabolismo , Fenómenos Fisiológicos de las Plantas , Transporte Biológico , Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Fotosíntesis , Árboles
3.
Tree Physiol ; 39(2): 201-210, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29931112

RESUMEN

Phloem failure has recently been recognized as one of the mechanisms causing tree mortality under drought, though direct evidence is still lacking. We combined 13C pulse-labelling of 8-year-old beech trees (Fagus sylvatica L.) growing outdoors in a nursery with an anatomical study of the phloem tissue in their stems to examine how drought alters carbon transport and phloem transport capacity. For the six trees under drought, predawn leaf water potential ranged from -0.7 to -2.4 MPa, compared with an average of -0.2 MPa in five control trees with no water stress. We also observed a longer residence time of excess 13C in the foliage and the phloem sap in trees under drought compared with controls. Compared with controls, excess 13C in trunk respiration peaked later in trees under moderate drought conditions and showed no decline even after 4 days under more severe drought conditions. We estimated higher phloem sap viscosity in trees under drought. We also observed much smaller sieve-tube radii in all drought-stressed trees, which led to lower sieve-tube conductivity and lower phloem conductance in the tree stem. We concluded that prolonged drought affected phloem transport capacity through a change in anatomy and that the slowdown of phloem transport under drought likely resulted from a reduced driving force due to lower hydrostatic pressure between the source and sink organs.


Asunto(s)
Sequías , Fagus/metabolismo , Floema/metabolismo , Árboles/metabolismo , Transporte Biológico , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Fagus/anatomía & histología , Presión Hidrostática , Floema/anatomía & histología , Hojas de la Planta/metabolismo , Árboles/anatomía & histología
4.
New Phytol ; 221(3): 1447-1456, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30267569

RESUMEN

Upland forest soils are known to be the main biological sink for methane, but studies have shown that net methane uptake of a forest ecosystem can be reduced when methane emissions by vegetation are considered. We estimated the methane budget of a young oak plantation by considering tree stems but also the understorey vegetation. Automated chambers connected to a laser-based gas analyser, on tree stems, bare soil and soil covered with understorey vegetation, recorded CH4 fluxes for 7 months at 3 h intervals. Tree stem emissions were low and equated to only 0.1% of the soil sink. Conversely, the presence of understorey vegetation increased soil methane uptake. This plant-driven enhancement of CH4 uptake occurred when the soil was consuming methane. At the stand level, the methane budget shifted from -1.4 ± 0.4 kg C ha-1 when we upscaled data obtained only on bare soil, to -2.9 ± 0.6 kg C ha-1 when we considered soil area that was covered with understorey vegetation. These results indicate that aerenchymatous plant species, which are known to reduce the methane sink in wetlands, actually increase soil methane uptake two-fold in an upland forest by enhancing methane and oxygen transport and/or by promoting growth of methanotrophic populations.


Asunto(s)
Bosques , Metano/metabolismo , Plantas/metabolismo , Clima , Tallos de la Planta/metabolismo , Quercus/metabolismo , Estaciones del Año , Suelo
5.
New Phytol ; 213(1): 140-153, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27513732

RESUMEN

13 CO2 pulse-labelling experiments were performed in situ on adult beeches (Fagus sylvatica) and pines (Pinus pinaster) at different phenological stages to study seasonal and interspecific short-term dynamics and partitioning of recently assimilated carbon (C) in leaves. Polar fraction (PF, including soluble sugars, amino acids and organic acids) and starch were purified from foliage sampled during a 10-d chase period. C contents, isotopic compositions and 13 C dynamics parameters were determined in bulk foliage, PF and starch. Decrease in 13 C amount in bulk foliage followed a two-pool exponential model highlighting 13 C partitioning between 'mobile' and 'stable' pools, the relative proportion of the latter being maximal in beech leaves in May. Early in the growing season, new foliage acted as a strong C sink in both species, but although young leaves and needles were already photosynthesizing, the latter were still supplied with previous-year needle photosynthates 2 months after budburst. Mean 13 C residence times (MRT) were minimal in summer, indicating fast photosynthate export to supply perennial organ growth in both species. In late summer, MRT differed between senescing beech leaves and overwintering pine needles. Seasonal variations of 13 C partitioning and dynamics in field-grown tree foliage are closely linked to phenological differences between deciduous and evergreen trees.


Asunto(s)
Carbono/metabolismo , Fagus/metabolismo , Pinus/metabolismo , Hojas de la Planta/metabolismo , Estaciones del Año , Isótopos de Carbono/metabolismo , Cinética , Almidón/metabolismo
6.
Tree Physiol ; 36(1): 6-21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26423335

RESUMEN

Potassium (K) is an important limiting factor of tree growth, but little is known of the effects of K supply on the long-distance transport of photosynthetic carbon (C) in the phloem and of the interaction between K fertilization and drought. We pulse-labelled 2-year-old Eucalyptus grandis L. trees grown in a field trial combining K fertilization (+K and -K) and throughfall exclusion (+W and -W), and we estimated the velocity of C transfer by comparing time lags between the uptake of (13)CO2 and its recovery in trunk CO2 efflux recorded at different heights. We also analysed the dynamics of the labelled photosynthates recovered in the foliage and in the phloem sap (inner bark extract). The mean residence time of labelled C in the foliage was short (21-31 h). The time series of (13)C in excess in the foliage was affected by the level of fertilization, whereas the effect of throughfall exclusion was not significant. The velocity of C transfer in the trunk (0.20-0.82 m h(-1)) was twice as high in +K trees than in -K trees, with no significant effect of throughfall exclusion except for one +K -W tree labelled in the middle of the drought season that was exposed to a more pronounced water stress (midday leaf water potential of -2.2 MPa). Our results suggest that besides reductions in photosynthetic C supply and in C demand by sink organs, the lower velocity under K deficiency is due to a lower cross-sectional area of the sieve tubes, whereas an increase in phloem sap viscosity is more likely limiting phloem transport under drought. In all treatments, 10 times less (13)C was recovered in inner bark extracts at the bottom of the trunk when compared with the base of the crown, suggesting that a large part of the labelled assimilates has been exported out of the phloem and replaced by unlabelled C. This supports the 'leakage-retrieval mechanism' that may play a role in maintaining the pressure gradient between source and sink organs required to sustain high velocity of phloem transport in tall trees.


Asunto(s)
Carbono/metabolismo , Eucalyptus/metabolismo , Floema/metabolismo , Fotosíntesis , Potasio/metabolismo , Árboles/metabolismo , Marcadores de Afinidad , Transporte Biológico Activo , Isótopos de Carbono
7.
PLoS One ; 8(5): e64626, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23741356

RESUMEN

Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy) or from soil organic matter (saprotrophy). The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum) production and situated in the west part of the Vosges, France, was labeled with (13)CO2. The transfer of (13)C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little (13)C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated (13)C prior to ascocarp development. Then, the mycorrhizas transferred (13)C to the ascocarps to provide constitutive carbon (1.7 mg of (13)C per day). The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season) came from the host.


Asunto(s)
Ascomicetos/metabolismo , Carbono/metabolismo , Corylus/metabolismo , Micorrizas/metabolismo , Transporte Biológico , Isótopos de Carbono , Francia , Hojas de la Planta/metabolismo , Suelo/química , Simbiosis/fisiología , Temperatura
8.
Environ Pollut ; 159(10): 2759-65, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21645949

RESUMEN

The influence of atmospheric phenanthrene (PHE) exposure (160 µg m(-3)) during one month on carbon allocation in clover was investigated by integrative (plant growth analysis) and instantaneous (13)CO(2) pulse-labelling approaches. PHE exposure diminished plant growth parameters (relative growth rate and net assimilation rate) and disturbed photosynthesis (carbon assimilation rate and chlorophyll content), leading to a 25% decrease in clover biomass. The root-shoot ratio was significantly enhanced (from 0.32 to 0.44). Photosynthates were identically allocated to leaves while less allocated to stems and roots. PHE exposure had a significant overall effect on the (13)C partitioning among clover organs as more carbon was retained in leaves at the expense of roots and stems. The findings indicate that PHE decreases root exudation or transfer to symbionts and in leaves, retains carbon in a non-structural form diverting photosynthates away from growth and respiration (emergence of an additional C loss process).


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Atmósfera/química , Carbono/metabolismo , Fenantrenos/toxicidad , Trifolium/efectos de los fármacos , Contaminantes Atmosféricos/análisis , Biomasa , Clorofila/metabolismo , Fenantrenos/análisis , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Trifolium/metabolismo
9.
New Phytol ; 190(1): 181-192, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21231935

RESUMEN

Phloem is the main pathway for transferring photosynthates belowground. In situ(13) C pulse labelling of trees 8-10 m tall was conducted in the field on 10 beech (Fagus sylvatica) trees, six sessile oak (Quercus petraea) trees and 10 maritime pine (Pinus pinaster) trees throughout the growing season. Respired (13) CO2 from trunks was tracked at different heights using tunable diode laser absorption spectrometry to determine time lags and the velocity of carbon transfer (V). The isotope composition of phloem extracts was measured on several occasions after labelling and used to estimate the rate constant of phloem sap outflux (kP ). Pulse labelling together with high-frequency measurement of the isotope composition of trunk CO2 efflux is a promising tool for studying phloem transport in the field. Seasonal variability in V was predicted in pine and oak by bivariate linear regressions with air temperature and soil water content. V differed among the three species consistently with known differences in phloem anatomy between broadleaf and coniferous trees. V increased with tree diameter in oak and beech, reflecting a nonlinear increase in volumetric flow with increasing bark cross-sectional area, which suggests changes in allocation pattern with tree diameter in broadleaf species. Discrepancies between V and kP indicate vertical changes in functional phloem properties.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Marcaje Isotópico , Estaciones del Año , Árboles/metabolismo , Biomasa , Isótopos de Carbono/metabolismo , Respiración de la Célula , Fagus/metabolismo , Cinética , Floema/metabolismo , Pinus/metabolismo , Corteza de la Planta/anatomía & histología , Extractos Vegetales/metabolismo , Quercus/metabolismo , Especificidad de la Especie , Temperatura , Factores de Tiempo
10.
Tree Physiol ; 29(11): 1433-45, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19797042

RESUMEN

The study of the fate of assimilated carbon in respiratory fluxes in the field is needed to resolve the residence and transfer times of carbon in the atmosphere-plant-soil system in forest ecosystems, but it requires high frequency measurements of the isotopic composition of evolved CO2. We developed a closed transparent chamber to label the whole crown of a tree and a labelling system capable of delivering a 3-h pulse of 99% 13CO2 in the field. The isotopic compositions of trunk and soil CO2 effluxes were recorded continuously on two labelled and one control trees by a tuneable diode laser absorption spectrometer during a 2-month chase period following the late summer labelling. The lag times for trunk CO2 effluxes are consistent with a phloem sap velocity of about 1 m h(-1). The isotopic composition (delta13C) of CO2 efflux from the trunk was maximal 2-3 days after labelling and declined thereafter following two exponential decays with a half-life of 2-8 days for the first and a half-life of 15-16 days for the second. The isotopic composition of the soil CO2 efflux was maximal 3-4 days after labelling and the decline was also well fitted with a sum of two exponential functions with a half-life of 3-5 days for the first exponential and a half-life of 16-18 days for the second. The amount of label recovered in CO2 efflux was around 10-15% of the assimilated 13CO2 for soil and 5-13% for trunks. As labelling occurred late in the growing season, substantial allocation to storage is expected.


Asunto(s)
Carbono/metabolismo , Fagus/metabolismo , Carbono/análisis , Carbono/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Clima , Semivida , Láseres de Semiconductores , Fotosíntesis , Suelo , Análisis Espectral/métodos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA