Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38138110

RESUMEN

It has been established that the human atrial natriuretic peptide is able to alter the effect of azithromycin on Kytococcus schroeteri H01 and Staphylococcus aureus 209P monospecies and binary biofilms. The effect of the hormone depends on the surface type and cultivation system, and it may have both enhancing and counteracting effects. The antagonistic effect of the hormone was observed mostly on hydrophobic surfaces, whereas the additive effect was observed on hydrophilic surfaces like glass. Also, the effect of the hormone depends on the antibiotic concentration and bacterial species. The combination of azithromycin and ANP led to an amplification of cell aggregation in biofilms, to the potential increase in matrix synthesis, and to a decrease in S. aureus in the binary community. Also, ANP, azithromycin, and their combinations caused the differential expression of genes of resistance to different antibiotics, like macrolides (mostly increasing expression in kytococci), fluoroquinolones, aminoglycosides, and others, in both bacteria.

2.
Microorganisms ; 11(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37764026

RESUMEN

In the current study, extensive Orbitrap mass spectrometry analysis was conducted for skin strain Micrococcus luteus C01 planktonic cultures and biofilms after 24 h and 72 h of incubation either in the presence of epinephrine or without any implementations. The investigation revealed the complex and conditionally extensive effect of epinephrine at concentrations closer to normal blood plasma concentrations on both planktonic cultures and biofilms of skin strain M. luteus C01. The concentrations of hundreds of proteins changed during the shift from planktonic growth mode to biofilm and hundreds of proteins were downregulated or upregulated in the presence of epinephrine. Ribosomal, TCA, and cell division proteins appear to be the most altered in their amounts in the presence of the hormone. Potentially, the regulatory mechanism of this process is connected with c-di-GMP and histidine kinases, which were affected by epinephrine in different samples. The phenomenon of epinephrine-based biofilm regulation in M. luteus C01 has wide implications for microbial endocrinology and other research areas.

3.
Biology (Basel) ; 12(3)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36979128

RESUMEN

The effect of C-type natriuretic peptide in a concentration closer to the normal level in human blood plasma was studied on the mono-species and dual-species biofilms of the skin commensal bacteria Cutibacterium acnes HL043PA2 and Staphylococcus epidermidis ATCC14990. Despite the marginal effect of the hormone on cutibacteria in mono-species biofilms, the presence of staphylococci in the community resulted in a global shift of the CNP effect, which appeared to increase the competitive properties of C. acnes, its proliferation and the metabolic activity of the community. S. epidermidis was mostly inhibited in the presence of CNP. Both bacteria had a significant impact on the gene expression levels revealed by RNA-seq. CNP did not affect the gene expression levels in mono-species cutibacterial biofilms; however, in the presence of staphylococci, five genes were differentially expressed in the presence of the hormone, including two ribosomal proteins and metal ABC transporter permease. In staphylococci, the Na-translocating system protein MpsB NADH-quinone oxidoreductase subunit L was downregulated in the dual-species biofilms in the presence of CNP, while in mono-species biofilms, two proteins of unknown function were downregulated. Hypothetically, at least one of the CNP mechanisms of action is via the competition for zinc, at least on cutibacteria.

4.
Front Microbiol ; 13: 1003942, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204611

RESUMEN

The importance of the impact of human hormones on commensal microbiota and microbial biofilms is established in lots of studies. In the present investigation, we continued and extended the research of epinephrine effects on the skin commensal Micrococcus luteus C01 and its biofilms, and also the matrix changes during the biofilm growth. Epinephrine in concentration 4.9 × 10-9 M which is close to normal blood plasma level increased the amount of polysaccharides and extracellular DNA in the matrix, changed extensively its protein, lipid and polysaccharide composition. The Ef-Tu factor was one of the most abundant proteins in the matrix and its amount increased in the presence of the hormone. One of the glucose-mannose polysaccharide was absent in the matrix in presence of epinephrine after 24 h of incubation. The matrix phospholipids were also eradicated by the addition of the hormone. Hence, epinephrine has a great impact on the M. luteus biofilms and their matrix composition, and this fact opens wide perspectives for the future research.

5.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32826218

RESUMEN

In most ecosystems, bacteria exist primarily as structured surface-associated biofilms that can be highly tolerant to antibiotics and thus represent an important health issue. Here, we explored drug repurposing as a strategy to identify new antibiofilm compounds, screening over 1,000 compounds from the Prestwick Chemical Library of approved drugs for specific activities that prevent biofilm formation by Escherichia coli Most growth-inhibiting compounds, which include known antibacterial but also antiviral and other drugs, also reduced biofilm formation. However, we also identified several drugs that were biofilm inhibitory at doses where only a weak effect or no effect on planktonic growth could be observed. The activities of the most specific antibiofilm compounds were further characterized using gene expression analysis, proteomics, and microscopy. We observed that most of these drugs acted by repressing genes responsible for the production of curli, a major component of the E. coli biofilm matrix. This repression apparently occurred through the induction of several different stress responses, including DNA and cell wall damage, and homeostasis of divalent cations, demonstrating that biofilm formation can be inhibited through a variety of molecular mechanisms. One tested drug, tyloxapol, did not affect curli expression or cell growth but instead inhibited biofilm formation by suppressing bacterial attachment to the surface.IMPORTANCE The prevention of bacterial biofilm formation is one of the major current challenges in microbiology. Here, by systematically screening a large number of approved drugs for their ability to suppress biofilm formation by Escherichia coli, we identified a number of prospective antibiofilm compounds. We further demonstrated different mechanisms of action for individual compounds, from induction of replicative stress to disbalance of cation homeostasis to inhibition of bacterial attachment to the surface. Our work demonstrates the potential of drug repurposing for the prevention of bacterial biofilm formation and suggests that also for other bacteria, the activity spectrum of antibiofilm compounds is likely to be broad.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Estrés Fisiológico
6.
Microbiol Resour Announc ; 8(40)2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582447

RESUMEN

Kytococcus schroeteri strain H01 was isolated from the skin of a healthy volunteer who underwent erythromycin treatment for a skin disorder 1 year prior. The draft genome consists of 2.38 Mb, a G+C content of 73.06%, and 2,221 protein coding sequences. This is the first genome characterization of a K. schroeteri strain isolated from human skin.

7.
Front Microbiol ; 10: 1284, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293526

RESUMEN

In skin, Cutibacterium acnes (former Propionibacterium acnes) can behave as an opportunistic pathogen, depending on the strain and environmental conditions. Acneic strains of C. acnes form biofilms inside skin-gland hollows, inducing inflammation and skin disorders. The essential exogenous products of C. acnes accumulate in the extracellular matrix of the biofilm, conferring essential bacterial functions to this structure. However, little is known about the actual composition of the biofilm matrix of C. acnes. Here, we developed a new technique for the extraction of the biofilm matrix of Gram-positive bacteria without the use of chemical or enzymatic digestion, known to be a source of artifacts. Our method is based on the physical separation of the cells and matrix of sonicated biofilms by ultracentrifugation through a CsCl gradient. Biofilms were grown on the surface of cellulose acetate filters, and the biomass was collected without contamination by the growth medium. The biofilm matrix of the acneic C. acnes RT5 strain appears to consist mainly of polysaccharides. The following is the ratio of the main matrix components: 62.6% polysaccharides, 9.6% proteins, 4.0% DNA, and 23.8% other compounds (porphyrins precursors and other). The chemical structure of the major polysaccharide was determined using a nuclear magnetic resonance technique, the formula being →6)-α-D-Galp-(1→4)-ß-D-ManpNAc3NAcA-(1→6)-α-D-Glcp-(1→4)-ß-D-ManpNAc3NAcA-(1→3)-ß-GalpNAc-(1→. We detected 447 proteins in the matrix, of which the most abundant were the chaperonin GroL, the elongation factors EF-Tu and EF-G, several enzymes of glycolysis, and proteins of unknown function. The matrix also contained more than 20 hydrolases of various substrata, pathogenicity factors, and many intracellular proteins and enzymes. We also performed surface-enhanced Raman spectroscopy analysis of the C. acnes RT5 matrix for the first time, providing the surface-enhanced Raman scattering (SERS) profiles of the C. acnes RT5 biofilm matrix and biofilm biomass. The difference between the matrix and biofilm biomass spectra showed successful matrix extraction rather than simply the presence of cell debris after sonication. These data show the complexity of the biofilm matrix composition and should be essential for the development of new anti-C. acnes biofilms and potential antibiofilm drugs.

8.
Microbiologyopen ; 8(3): e00659, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29911330

RESUMEN

Increasing popularity of preservative-free cosmetics necessitates in-depth research, specifically as bacteria can react to local factors by important metabolic changes. In this respect, investigating the effect of cosmetic preparations on pathogenic strains of commensal species such as acneic forms of Cutibacterium acnes (former Propionibacterium acnes) and bacteria behaving both as commensals and opportunistic pathogens such as Staphylococcus aureus is of major interest. In this study, we studied the effect of commonly used cosmetics, Uriage™ thermal water (UTW) and a rhamnose-rich polysaccharide (PS291® ) on RT4 and RT5 acneic strains of C. acnes and a cutaneous strain of S. aureus. UTW affected the growth kinetic of acneic C. acnes essentially by increasing its generation time and reducing its biomass, whereas only the S. aureus final biomass was decreased. PS291 had more marginal effects. Both compounds showed a marked antibiofilm activity on C. acnes and S. aureus. For S. aureus that appeared essentially due to inhibition of initial adhesion. Cosmetics did not modify the metabolic activity of bacteria. Both C. acnes and S. aureus showed marked hydrophobic surface properties. UTW and PS291 had limited effect on C. acnes but increased the hydrophobic character of S. aureus. This work underlines the effect of cosmetics on cutaneous bacteria and the potential limitations of preservative-free products.


Asunto(s)
Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Cosméticos/metabolismo , Propionibacterium acnes/efectos de los fármacos , Propionibacterium acnes/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Adhesión Bacteriana/efectos de los fármacos , Metabolismo/efectos de los fármacos
9.
J Innate Immun ; 11(3): 227-241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30396172

RESUMEN

Bacterial biofilms constitute a critical problem in hospitals, especially in resuscitation units or for immunocompromised patients, since bacteria embedded in their own matrix are not only protected against antibiotics but also develop resistant variant strains. In the last decade, an original approach to prevent biofilm formation has consisted of studying the antibacterial potential of host communication molecules. Thus, some of these compounds have been identified for their ability to modify the biofilm formation of both Gram-negative and Gram-positive bacteria. In addition to their effect on biofilm production, a detailed study of the mechanism of action of these human hormones on bacterial physiology has allowed the identification of new bacterial pathways involved in biofilm formation. In this review, we focus on the impact of neuropeptidic hormones on bacteria, address some future therapeutic issues, and provide a new view of inter-kingdom communication.


Asunto(s)
Biopelículas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Neuropéptidos/farmacología , Hormonas Peptídicas/farmacología , Péptido Relacionado con Gen de Calcitonina/farmacología , Dinorfinas/farmacología , Bacterias Gramnegativas/patogenicidad , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/patogenicidad , Bacterias Grampositivas/fisiología , Humanos , Péptidos Natriuréticos/farmacología , Somatostatina/farmacología , Virulencia
10.
Front Microbiol ; 9: 2912, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619105

RESUMEN

Staphylococcus aureus and Cutibacterium acnes are common representatives of the human skin microbiome. However, when these bacteria are organized in biofilm, they could be involved in several skin disorders such as acne or psoriasis. They inhabit in hollows of hair follicles and skin glands, where they form biofilms. There, they are continuously exposed to human hormones, including human natriuretic peptides (NUPs). We first observed that the atrial natriuretic peptide (ANP) and the C-type natriuretic peptide (CNP) have a strong effect S. aureus and C. acnes biofilm formation on the skin. These effects are significantly dependent on the aero-anaerobic conditions and temperature. We also show that both ANP and CNP increased competitive advantages of C. acnes toward S. aureus in mixed biofilm. Because of their temperature-dependent effects, NUPs appear to act as a thermostat, allowing the skin to modulate bacterial development in normal and inflammatory conditions. This is an important step toward understanding how human neuroendocrine systems can regulate the cutaneous microbial community and should be important for applications in fundamental sciences, medicine, dermatology, and cosmetology.

11.
Carbohydr Res ; 404: 93-7, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25665785

RESUMEN

O-Specific polysaccharides were obtained from the lipopolysaccharides isolated from the planktonic and biofilm cultures of Pseudomonas chlororaphis 449 and studied by composition analysis and 1D and 2D (1)H and (13)C NMR spectroscopy. The following structure was established: -->4)-α-D-GalpNAc6Ac-(1-->3)-ß-D-QuipNAc-(1-->6)-α-D-GlcpNAc-(1-->ß-D-GlcpNAc-(1-->3) where the degree of non-stoichiometric 6-O-acetylation of GalNAc is ∼ 60% in the planktonic form or ∼ 10% in biofilm.


Asunto(s)
Antígenos O/química , Polisacáridos Bacterianos/química , Pseudomonas/fisiología , Biopelículas/crecimiento & desarrollo , Secuencia de Carbohidratos , Plancton/crecimiento & desarrollo , Espectroscopía de Protones por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...