Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 45(31): 12532-8, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27435992

RESUMEN

The reaction of the chloro-bridged dimeric precursor [{(p-cym)Ru(II)Cl}(µ-Cl)]2 (p-cym = p-cymene) with the bridging ligand 3,6-bis(3,5-dimethylpyrazolyl)-1,2,4,5-tetrazine (bpytz) in ethanol results in the formation of the dinuclear complex [{(p-cym)Ru(II)Cl}2(µ-bpytz˙(-))](+), [1](+). The bridging tetrazine ligand is reduced to the anion radical (bpytz˙(-)) which connects the two Ru(II) centres. Compound [1](PF6) has been characterised by an array of spectroscopic and electrochemical techniques. The radical anion character has been confirmed by magnetic moment (corresponding to one electron paramagnetism) measurement, EPR spectroscopic investigation (tetrazine radical anion based EPR spectrum) as well as density functional theory based calculations. Complex [1](+) displays two successive one electron oxidation processes at 0.66 and 1.56 V versus Ag/AgCl which can be attributed to [{(p-cym)Ru(II)C}2(µ-bpytz˙(-))](+)/[{(p-cym)Ru(II)Cl}2(µ-bpytz)](2+) and [{(p-cym)Ru(II)Cl}2(µ-bpytz)](+)/[{(p-cym)Ru(III)Cl}2(µ-bpytz)](2+) processes (couples I and II), respectively. The reduction processes (couple III-couple V), which are irreversible, likely involve the successive reduction of the bridging ligand and the metal centres together with loss of the coordinated chloride ligands. UV-Vis-NIR spectroelectrochemical investigation reveals typical tetrazine radical anion containing bands for [1](+) and a strong absorption in the visible region for the oxidized form [1](2+), which can be assigned to a Ru(II) → π* (tetrazine) MLCT transition. The assignment of spectroscopic bands was confirmed by theoretical calculations.

2.
Dalton Trans ; 45(7): 2914-23, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26750146

RESUMEN

Synthesis of two new Au(III) corrole complexes with unsymmetrically substituted corrole ligands is presented here. The newly synthesized Au-compounds have been characterized by various spectroscopic techniques. The structural characterization of a representative Au(III) corrole has also been possible. Electrochemical, UV-vis-NIR/EPR spectroelectrochemical and DFT studies have been used to decipher the electronic structures of various electro-generated species. These are the first UV-vis-NIR/EPR spectroelectrochemical investigations on Au(III) corroles. Assignment of redox states of electro-generated Au(III) corroles is supported by DFT analysis. In contrast to the metal centered reduction reported in Au(III) porphyrins, one electron reduction in Au(III) corroles has been assigned to corrole centered on the basis of experimental and theoretical studies. Thus, the Au(III) corroles (not the analogous Au(III) porphyrin derivatives!) bear a truly redox inactive Au(III) center. Additionally, these Au-corrole complexes display NIR electrochromism, the origin of which is all on corrole-centered processes.

3.
Inorg Chem ; 54(10): 4621-35, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25947040

RESUMEN

Activating chemical bonds through external triggers and understanding the underlying mechanism are at the heart of developing molecules with catalytic and switchable functions. Thermal, photochemical, and electrochemical bond activation pathways are useful for many chemical reactions. In this Article, a series of Ru(II) complexes containing a bidentate and a tripodal ligand were synthesized. Starting from all-pyridine complex 1(2+), the pyridines were stepwise substituted with "click" triazoles (2(2+)-7(2+)). Whereas the thermo- and photoreactivity of 1(2+) are due to steric repulsion within the equatorial plane of the complex, 3(2+)-6(2+) are reactive because of triazoles in axial positions, and 4(2+) shows unprecedented photoreactivity. Complexes that feature neither steric interactions nor axial triazoles (2(2+) and 7(2+)) do not show any reactivity. Furthermore, a redox-triggered conversion mechanism was discovered in 1(2+), 3(2+), and 4(2+). We show here ligand design principles required to convert a completely inert molecule to a reactive one and vice versa, and provide mechanistic insights into their functioning. The results presented here will likely have consequences for developing a future generation of catalysts, sensors, and molecular switches.

4.
Inorg Chem ; 54(7): 3376-86, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25790375

RESUMEN

The compounds Ru(acac)2(Q) (1), [Ru(bpy)2(Q)](ClO4)2 ([2](ClO4)2), and [Ru(pap)2(Q)]PF6 ([3]PF6), containing Q = N,N'-diphenyl-o-benzoquinonediimine and donating 2,4-pentanedionate ligands (acac(-)), π-accepting 2,2(/)-bipyridine (bpy), or strongly π-accepting 2-phenylazopyridine (pap) were prepared and structurally identified. The electronic structures of the complexes and several accessible oxidized and reduced forms were studied experimentally (electrochemistry, magnetic resonance, ultraviolet-visible-near-infrared (UV-vis-NIR) spectroelectrochemistry) and computationally (DFT/TD-DFT) to reveal significantly variable electron transfer behavior and charge distribution. While the redox system 1(+)-1(-) prefers trivalent ruthenium with corresponding oxidation states Q(0)-Q(2-) of the noninnocent ligand, the series 2(2+)-2(0) and 3(2+)-3(-) retain Ru(II). The bpy and pap co-ligands are not only spectators but can also be reduced prior to a second reduction of Q. The present study with new experimental and computational evidence on the influence of co-ligands on the metal is complementary to a report on the substituent effects in o-quinonediimine ligands [Kalinina et al., Inorg. Chem. 2008, 47, 10110] and to the discussion of the most appropriate oxidation state formulation Ru(II)(Q(0)) or Ru(III)(Q(• -)).

5.
Inorg Chem ; 53(17): 9348-56, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25137231

RESUMEN

In contrast to several reported coordination compounds of trans-Nindigo ligands [Nindigo = indigo-bis(N-arylimine) = LH2] with one or two six-membered chelate rings involving one indole N and one extracyclic N for metal binding, the new diruthenium complex ion [(acac)2Ru(µ,η(2):η(2)-L)Ru(bpy)2](2+) = 2(2+) exhibits edge-sharing five- and seven-membered chelate rings in the first documented case of asymmetric bridging by a Nindigo ligand in the cis configuration [L(2-) = indigo-bis(N-phenylimine)dianion]. The dication in compound [2](ClO4)2 displays one Ru(α-diimine)3 site and one ruthenium center with three negatively charged chelate ligands. Compound [2](ClO4)2 is obtained from the [Ru(bpy)2](2+)-containing cis precursor [(LH)Ru(bpy)2]ClO4 = [1]ClO4, which exhibits intramolecular H-bonding in the cation. Four accessible oxidation states each were characterized for the 1(n) and 2(n) redox series with respect to metal- or ligand-centered electron transfer, based on X-ray structures, electron paramagnetic resonance, and ultraviolet-visible-near-infrared spectroelectrochemistry in conjunction with density functional theory calculation results. The structural asymmetry in the Ru(III)/Ru(II) system 2(2+) is reflected by the electronic asymmetry (class I mixed-valence situation), leaving the noninnocent Nindigo bridge as the main redox-active site.

6.
Inorg Chem ; 53(14): 7389-403, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24983788

RESUMEN

The new compounds [Ru(acac)2(BIAN)], BIAN = bis(arylimino)acenaphthene (aryl = Ph (1a), 4-MeC6H4 (2a), 4-OMeC6H4 (3a), 4-ClC6H4 (4a), 4-NO2C6H4 (5a)), were synthesized and structurally, electrochemically, spectroscopically, and computationally characterized. The α-diimine sections of the compounds exhibit intrachelate ring bond lengths 1.304 Å < d(CN) < 1.334 and 1.425 Å < d(CC) < 1.449 Å, which indicate considerable metal-to-ligand charge transfer in the ground state, approaching a Ru(III)(BIAN(•-)) oxidation state formulation. The particular structural sensitivity of the strained peri-connecting C-C bond in the BIAN ligands toward metal-to-ligand charge transfer is discussed. Oxidation of [Ru(acac)2(BIAN)] produces electron paramagnetic resonance (EPR) and UV-vis-NIR (NIR = near infrared) spectroelectrochemically detectable Ru(III) species, while the reduction yields predominantly BIAN-based spin, in agreement with density functional theory (DFT) spin-density calculations. Variation of the substituents from CH3 to NO2 has little effect on the spin distribution but affects the absorption spectra. The dinuclear compounds {(µ-tppz)[Ru(Cl)(BIAN)]2}(ClO4)2, tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine; aryl (BIAN) = Ph ([1b](ClO4)2), 4-MeC6H4 ([2b](ClO4)2), 4-OMeC6H4 ([3b](ClO4)2), 4-ClC6H4 ([4b](ClO4)2), were also obtained and investigated. The structure determination of [2b](ClO4)2 and [3b](ClO4)2 reveals trans configuration of the chloride ligands and unreduced BIAN ligands. The DFT and spectroelectrochemical results (UV-vis-NIR, EPR) indicate oxidation to a weakly coupled Ru(III)Ru(II) mixed-valent species but reduction to a tppz-centered radical state. The effect of the π electron-accepting BIAN ancillary ligands is to diminish the metal-metal interaction due to competition with the acceptor bridge tppz.

7.
Inorg Chem ; 53(12): 6082-93, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24896222

RESUMEN

The compounds [(acac)2Ru(III)(µ-H2L(2-))Ru(III)(acac)2] (rac, 1, and meso, 1') and [(bpy)2Ru(II)(µ-H2L(•-))Ru(II)(bpy)2](ClO4)3 (meso, [2](ClO4)3) have been structurally, magnetically, spectroelectrochemically, and computationally characterized (acac(-) = acetylacetonate, bpy = 2,2'-bipyridine, and H4L = 1,4-diamino-9,10-anthraquinone). The N,O;N',O'-coordinated µ-H2L(n-) forms two ß-ketiminato-type chelate rings, and 1 or 1' are connected via NH···O hydrogen bridges in the crystals. 1 exhibits a complex magnetic behavior, while [2](ClO4)3 is a radical species with mixed ligand/metal-based spin. The combination of redox noninnocent bridge (H2L(0) → → → →H2L(4-)) and {(acac)2Ru(II)} → →{(acac)2Ru(IV)} or {(bpy)2Ru(II)} → {(bpy)2Ru(III)} in 1/1' or 2 generates alternatives regarding the oxidation state formulations for the accessible redox states (1(n) and 2(n)), which have been assessed by UV-vis-NIR, EPR, and DFT/TD-DFT calculations. The experimental and theoretical studies suggest variable mixing of the frontier orbitals of the metals and the bridge, leading to the following most appropriate oxidation state combinations: [(acac)2Ru(III)(µ-H2L(•-))Ru(III)(acac)2](+) (1(+)) → [(acac)2Ru(III)(µ-H2L(2-))Ru(III)(acac)2] (1) → [(acac)2Ru(III)(µ-H2L(•3-))Ru(III)(acac)2](-)/[(acac)2Ru(III)(µ-H2L(2-))Ru(II)(acac)2](-) (1(-)) → [(acac)2Ru(III)(µ-H2L(4-))Ru(III)(acac)2](2-)/[(acac)2Ru(II)(µ-H2L(2-))Ru(II)(acac)2](2-) (1(2-)) and [(bpy)2Ru(III)(µ-H2L(•-))Ru(II)(bpy)2](4+) (2(4+)) → [(bpy)2Ru(II)(µ-H2L(•-))Ru(II)(bpy)2](3+)/[(bpy)2Ru(II)(µ-H2L(2-))Ru(III)(bpy)2](3+) (2(3+)) → [(bpy)2Ru(II)(µ-H2L(2-))Ru(II)(bpy)2](2+) (2(2+)). The favoring of Ru(III) by σ-donating acac(-) and of Ru(II) by the π-accepting bpy coligands shifts the conceivable valence alternatives accordingly. Similarly, the introduction of the NH donor function in H2L(n) as compared to O causes a cathodic shift of redox potentials with corresponding consequences for the valence structure.


Asunto(s)
2,2'-Dipiridil/química , Antraquinonas/química , Hidroxibutiratos/química , Compuestos Organometálicos/química , Pentanonas/química , Rutenio/química , Cristalografía por Rayos X , Electroquímica , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Magnetismo , Modelos Moleculares , Espectrofotometría Ultravioleta
8.
Chemistry ; 20(3): 781-93, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24403171

RESUMEN

Electrochemical and photochemical bond-activation steps are important for a variety of chemical transformations. We present here four new complexes, [Ru(L(n) )(dmso)(Cl)]PF6 (1-4), where L(n) is a tripodal amine ligand with 4-n pyridylmethyl arms and n-1 triazolylmethyl arms. Structural comparisons show that the triazoles bind closer to the Ru center than the pyridines. For L(2) , two isomers (with respect to the position of the triazole arm, equatorial or axial), trans-2sym and trans-2un , could be separated and compared. The increase in the number of the triazole arms in the ligand has almost no effect on the Ru(II) /Ru(III) oxidation potentials, but it increases the stability of the RuSdmso bond. Hence, the oxidation waves become more reversible from trans-1 to trans-4, and whereas the dmso ligand readily dissociates from trans-1 upon heating or irradiation with UV light, the RuS bond of trans-4 remains perfectly stable under the same conditions. The strength of the RuS bond is not only influenced by the number of triazole arms but also by their position, as evidenced by the difference in redox behavior and reactivity of the two isomers, trans-2sym and trans-2un . A mechanistic picture for the electrochemical, thermal, and photochemical bond activation is discussed with data from NMR spectroscopy, cyclic voltammetry, and spectroelectrochemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA