Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 26(7): 3036-50, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24989042

RESUMEN

During oxygenic photosynthesis, metabolic reactions of CO2 fixation require more ATP than is supplied by the linear electron flow operating from photosystem II to photosystem I (PSI). Different mechanisms, such as cyclic electron flow (CEF) around PSI, have been proposed to participate in reequilibrating the ATP/NADPH balance. To determine the contribution of CEF to microalgal biomass productivity, here, we studied photosynthesis and growth performances of a knockout Chlamydomonas reinhardtii mutant (pgrl1) deficient in PROTON GRADIENT REGULATION LIKE1 (PGRL1)-mediated CEF. Steady state biomass productivity of the pgrl1 mutant, measured in photobioreactors operated as turbidostats, was similar to its wild-type progenitor under a wide range of illumination and CO2 concentrations. Several changes were observed in pgrl1, including higher sensitivity of photosynthesis to mitochondrial inhibitors, increased light-dependent O2 uptake, and increased amounts of flavodiiron (FLV) proteins. We conclude that a combination of mitochondrial cooperation and oxygen photoreduction downstream of PSI (Mehler reactions) supplies extra ATP for photosynthesis in the pgrl1 mutant, resulting in normal biomass productivity under steady state conditions. The lower biomass productivity observed in the pgrl1 mutant in fluctuating light is attributed to an inability of compensation mechanisms to respond to a rapid increase in ATP demand.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Oxígeno/metabolismo , Fotosíntesis , Adenosina Trifosfato/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/crecimiento & desarrollo , Chlamydomonas reinhardtii/efectos de la radiación , Cloroplastos/metabolismo , Transporte de Electrón , Electrones , Técnicas de Inactivación de Genes , Luz , Mitocondrias/metabolismo , Mutación , NADP/metabolismo , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Protones
2.
Plant Cell ; 24(9): 3838-52, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23023168

RESUMEN

Cytokinin regulates many aspects of plant development, and in legume crops, this phytohormone is necessary and sufficient for symbiotic nodule organogenesis, allowing them to fix atmospheric nitrogen. To identify direct links between cytokinins and nodule organogenesis, we determined a consensus sequence bound in vitro by a transcription factor (TF) acting in cytokinin signaling, the nodule-enhanced Medicago truncatula Mt RR1 response regulator (RR). Among genes rapidly regulated by cytokinins and containing this so-called RR binding site (RRBS) in their promoters, we found the nodulation-related Type-A RR Mt RR4 and the Nodulation Signaling Pathway 2 (NSP2) TF. Site-directed mutagenesis revealed that RRBS cis-elements in the RR4 and NSP2 promoters are essential for expression during nodule development and for cytokinin induction. Furthermore, a microRNA targeting NSP2 (miR171 h) is also rapidly induced by cytokinins and then shows an expression pattern anticorrelated with NSP2. Other primary targets regulated by cytokinins depending on the Cytokinin Response1 (CRE1) receptor were a cytokinin oxidase/dehydrogenase (CKX1) and a basic Helix-Loop-Helix TF (bHLH476). RNA interference constructs as well as insertion of a Tnt1 retrotransposon in the bHLH gene led to reduced nodulation. Hence, we identified two TFs, NSP2 and bHLH476, as direct cytokinin targets acting at the convergence of phytohormonal and symbiotic cues.


Asunto(s)
Citocininas/farmacología , Medicago truncatula/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Nodulación de la Raíz de la Planta/genética , Sinorhizobium meliloti/fisiología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Secuencia de Consenso , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/efectos de los fármacos , Medicago truncatula/genética , Medicago truncatula/microbiología , MicroARNs/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Fijación del Nitrógeno , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Plantones/efectos de los fármacos , Plantones/genética , Plantones/microbiología , Plantones/fisiología , Alineación de Secuencia , Transducción de Señal , Simbiosis , Factores de Transcripción/genética , Transcriptoma
3.
Mol Plant ; 5(5): 1068-81, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22419822

RESUMEN

Evolutionary diversity can be driven by the interaction of plants with different environments. Molecular bases involved in ecological adaptations to abiotic constraints can be explored using genomic tools. Legumes are major crops worldwide and soil salinity is a main stress affecting yield in these plants. We analyzed in the Medicago truncatula legume the root transcriptome of two genotypes having contrasting responses to salt stress: TN1.11, sampled in a salty Tunisian soil, and the reference Jemalong A17 genotype. TN1.11 plants show increased root growth under salt stress as well as a differential accumulation of sodium ions when compared to A17. Transcriptomic analysis revealed specific gene clusters preferentially regulated by salt in root apices of TN1.11, notably those related to the auxin pathway and to changes in histone variant isoforms. Many genes encoding transcription factors (TFs) were also differentially regulated between the two genotypes in response to salt. Among those selected for functional studies, overexpression in roots of the A17 genotype of the bHLH-type TF most differentially regulated between genotypes improved significantly root growth under salt stress. Despite the global complexity of the differential transcriptional responses, we propose that an increase in this bHLH TF expression may be linked to the adaptation of M. truncatula to saline soil environments.


Asunto(s)
Perfilación de la Expresión Génica , Medicago truncatula/genética , Raíces de Plantas/metabolismo , Cloruro de Sodio/metabolismo , Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Genotipo , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo
4.
New Phytol ; 191(3): 647-661, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21770944

RESUMEN

• Legume roots develop two types of lateral organs, lateral roots and nodules. Nodules develop as a result of a symbiotic interaction with rhizobia and provide a niche for the bacteria to fix atmospheric nitrogen for the plant. • The Arabidopsis NAC1 transcription factor is involved in lateral root formation, and is regulated post-transcriptionally by miRNA164 and by SINAT5-dependent ubiquitination. We analyzed in Medicago truncatula the role of the closest NAC1 homolog in lateral root formation and in nodulation. • MtNAC1 shows a different expression pattern in response to auxin than its Arabidopsis homolog and no changes in lateral root number or nodulation were observed in plants affected in MtNAC1 expression. In addition, no interaction was found with SINA E3 ligases, suggesting that post-translational regulation of MtNAC1 does not occur in M. truncatula. Similar to what was found in Arabidopsis, a conserved miR164 target site was retrieved in MtNAC1, which reduced protein accumulation of a GFP-miR164 sensor. Furthermore, miR164 and MtNAC1 show an overlapping expression pattern in symbiotic nodules, and overexpression of this miRNA led to a reduction in nodule number. • This work suggests that regulatory pathways controlling a conserved transcription factor are complex and divergent between M. truncatula and Arabidopsis.


Asunto(s)
Medicago truncatula/fisiología , Proteínas de Plantas/metabolismo , Sinorhizobium meliloti/fisiología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Flores/efectos de los fármacos , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/farmacología , Medicago truncatula/efectos de los fármacos , Medicago truncatula/genética , MicroARNs/genética , Datos de Secuencia Molecular , Mutación , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Estructura Terciaria de Proteína , ARN de Planta/genética , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
5.
Plant Cell ; 23(7): 2619-30, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21764992

RESUMEN

Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Electrones , Hidrógeno/metabolismo , Fotosíntesis/fisiología , Proteínas de Plantas/metabolismo , Protones , Aerobiosis , Anaerobiosis , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/genética , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/fisiología , Prueba de Complementación Genética , Hidrogenasas/metabolismo , Luz , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema I/efectos de los fármacos , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Ionóforos de Protónes/farmacología , Azufre/metabolismo
6.
Plant J ; 65(4): 622-33, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21244535

RESUMEN

Phytohormonal interactions are essential to regulate plant organogenesis. In response to the presence of signals from symbiotic bacteria, the Nod factors, legume roots generate a new organ: the nitrogen-fixing nodule. Analysis of mutants in the Medicago truncatula CRE1 cytokinin receptor and of the MtRR4 cytokinin primary response gene expression pattern revealed that cytokinin acts in initial cortical cell divisions and later in the transition between meristematic and differentiation zones of the mature nodule. MtCRE1 signaling is required for activation of the downstream nodulation-related transcription factors MtERN1, MtNSP2 and MtNIN, as well as to regulate expression and accumulation of PIN auxin efflux carriers. Whereas the MtCRE1 pathway is required to allow the inhibition of polar auxin transport in response to rhizobia, nodulation is still negatively regulated by the MtEIN2/SICKLE-dependent ethylene pathway in cre1 mutants. Hence, MtCRE1 signaling acts as a regulatory knob, integrating positive plant and bacterial cues to control legume nodule organogenesis.


Asunto(s)
Citocininas/metabolismo , Medicago truncatula/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Receptores de Superficie Celular/metabolismo , Simbiosis , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/genética , ARN de Planta/genética , Receptores de Superficie Celular/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Factores de Transcripción/metabolismo , Transformación Genética
7.
Plant Cell ; 20(10): 2696-713, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18978033

RESUMEN

Mechanisms regulating legume root nodule development are still poorly understood, and very few regulatory genes have been cloned and characterized. Here, we describe EFD (for ethylene response factor required for nodule differentiation), a gene that is upregulated during nodulation in Medicago truncatula. The EFD transcription factor belongs to the ethylene response factor (ERF) group V, which contains ERN1, 2, and 3, three ERFs involved in Nod factor signaling. The role of EFD in the regulation of nodulation was examined through the characterization of a null deletion mutant (efd-1), RNA interference, and overexpression studies. These studies revealed that EFD is a negative regulator of root nodulation and infection by Rhizobium and that EFD is required for the formation of functional nitrogen-fixing nodules. EFD appears to be involved in the plant and bacteroid differentiation processes taking place beneath the nodule meristem. We also showed that EFD activated Mt RR4, a cytokinin primary response gene that encodes a type-A response regulator. We propose that EFD induction of Mt RR4 leads to the inhibition of cytokinin signaling, with two consequences: the suppression of new nodule initiation and the activation of differentiation as cells leave the nodule meristem. Our work thus reveals a key regulator linking early and late stages of nodulation and suggests that the regulation of the cytokinin pathway is important both for nodule initiation and development.


Asunto(s)
Medicago truncatula/microbiología , Proteínas de Plantas/fisiología , Nodulación de la Raíz de la Planta/fisiología , Factores de Transcripción/fisiología , Núcleo Celular/metabolismo , Citocininas/metabolismo , Etilenos/metabolismo , Retroalimentación Fisiológica , Eliminación de Gen , Perfilación de la Expresión Génica , Medicago truncatula/citología , Medicago truncatula/crecimiento & desarrollo , Datos de Secuencia Molecular , Familia de Multigenes , Fijación del Nitrógeno , Filogenia , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Interferencia de ARN , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Sinorhizobium meliloti/fisiología , Factores de Transcripción/análisis , Factores de Transcripción/genética
8.
Plant J ; 54(5): 876-87, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18298674

RESUMEN

Legume root architecture is characterized by the development of two de novo meristems, leading to the formation of lateral roots or symbiotic nitrogen-fixing nodules. Organogenesis involves networks of transcription factors, the encoding mRNAs of which are frequently targets of microRNA (miRNA) regulation. Most plant miRNAs, in contrast with animal miRNAs, are encoded as single entities in an miRNA precursor. In the model legume Medicago truncatula, we have identified the MtMIR166a precursor containing tandem copies of MIR166 in a single transcriptional unit. These miRNAs post-transcriptionally regulate a new family of transcription factors associated with nodule development, the class-III homeodomain-leucine zipper (HD-ZIP III) genes. In situ expression analysis revealed that these target genes are spatially co-expressed with MIR166 in vascular bundles, and in apical regions of roots and nodules. Overexpression of the tandem miRNA precursor correlated with MIR166 accumulation and the downregulation of several class-III HD-ZIP genes, indicating its functionality. MIR166 overexpression reduced the number of symbiotic nodules and lateral roots, and induced ectopic development of vascular bundles in these transgenic roots. Hence, plant polycistronic miRNA precursors, although rare, can be processed, and MIR166-mediated post-transcriptional regulation is a new regulatory pathway involved in the regulation of legume root architecture.


Asunto(s)
Medicago truncatula/crecimiento & desarrollo , MicroARNs/fisiología , Raíces de Plantas/crecimiento & desarrollo , Secuencia de Bases , Northern Blotting , Cartilla de ADN , Regulación de la Expresión Génica de las Plantas/fisiología , Hibridación in Situ , MicroARNs/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...