Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 85
1.
Med Sci Sports Exerc ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38650118

PURPOSE: Exercise training during the National Aeronautics and Space Administration (NASA) 70-day bed rest study effectively counteracted the decline in aerobic capacity, muscle mass, strength, and endurance. We aimed to characterize the genomic response of the participants' vastus lateralis (VL) on day 64 of bed rest with and without exercise countermeasures. METHODS: Twenty-two healthy young males were randomized into three groups: 1) bed rest only (n = 7), 2) bed rest + aerobic (6 d/wk) and resistance training (3 d/wk) on standard equipment (n = 7), and 3) bed rest + aerobic and resistance training using a flywheel device (n = 8). The VL gene and microRNA microarrays were analyzed using GeneSpring GX 14.9.1. RESULTS: Bed rest significantly altered the expression of 2113 annotated genes in at least one out of the three study groups (fold change (FC) > 1.2; P < 0.05). Interaction analysis revealed that exercise attenuated the bed rest effect of 511 annotated genes (FC 1.2, P < 0.05). In the bed rest only group, a predominant downregulation of genes was observed while in the two exercise groups there was a notable attenuation or reversal of this effect, with no significant differences between the two exercise modalities. Enrichment analysis identified functional categories and gene pathways, many of them related to the mitochondria. Additionally, bed rest significantly altered the expression of 35 microRNAs (FC > 1.2, P < 0.05) with no difference between the three groups. Twelve are known to regulate some of the mitochondrial-related genes that were altered following bed rest. CONCLUSIONS: Mitochondrial gene expression was a significant component of the molecular response to long-term bed rest. While exercise attenuated the FC in the downregulation of many genes, it did not completely counteract all the molecular consequences.

2.
J Appl Physiol (1985) ; 136(5): 1015-1039, 2024 May 01.
Article En | MEDLINE | ID: mdl-38328821

The efficacy of the NASA SPRINT exercise countermeasures program for quadriceps (vastus lateralis) and triceps surae (soleus) skeletal muscle health was investigated during 70 days of simulated microgravity. Individuals completed 6° head-down-tilt bedrest (BR, n = 9), bedrest with resistance and aerobic exercise (BRE, n = 9), or bedrest with resistance and aerobic exercise and low-dose testosterone (BRE + T, n = 8). All groups were periodically tested for muscle (n = 9 times) and aerobic (n = 4 times) power during bedrest. In BR, surprisingly, the typical bedrest-induced decrements in vastus lateralis myofiber size and power were either blunted (myosin heavy chain, MHC I) or eliminated (MHC IIa), along with no change (P > 0.05) in %MHC distribution and blunted quadriceps atrophy. In BRE, MHC I (vastus lateralis and soleus) and IIa (vastus lateralis) contractile performance was maintained (P > 0.05) or increased (P < 0.05). Vastus lateralis hybrid fiber percentage was reduced (P < 0.05) and energy metabolism enzymes and capillarization were generally maintained (P > 0.05), while not all of these positive responses were observed in the soleus. Exercise offsets 100% of quadriceps and approximately two-thirds of soleus whole muscle mass loss. Testosterone (BRE + T) did not provide any benefit over exercise alone for either muscle and for some myocellular parameters appeared detrimental. In summary, the periodic testing likely provided a partial exercise countermeasure for the quadriceps in the bedrest group, which is a novel finding given the extremely low exercise dose. The SPRINT exercise program appears to be viable for the quadriceps; however, refinement is needed to completely protect triceps surae myocellular and whole muscle health for astronauts on long-duration spaceflights.NEW & NOTEWORTHY This study provides unique exercise countermeasures development information for astronauts on long-duration spaceflights. The NASA SPRINT program was protective for quadriceps myocellular and whole muscle health, whereas the triceps surae (soleus) was only partially protected as has been shown with other programs. The bedrest control group data may provide beneficial information for overall exercise dose and targeting fast-twitch muscle fibers. Other unique approaches for the triceps surae are needed to supplement existing exercise programs.


Exercise , Muscle, Skeletal , Myosin Heavy Chains , Quadriceps Muscle , Weightlessness Simulation , Humans , Male , Quadriceps Muscle/physiology , Quadriceps Muscle/metabolism , Weightlessness Simulation/methods , Adult , Exercise/physiology , Myosin Heavy Chains/metabolism , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , United States National Aeronautics and Space Administration , United States , Bed Rest/adverse effects , Testosterone/metabolism , Testosterone/blood , Space Flight/methods , Muscular Atrophy/prevention & control , Muscular Atrophy/physiopathology , Resistance Training/methods , Weightlessness/adverse effects , Muscle Strength/physiology
3.
NPJ Microgravity ; 9(1): 11, 2023 Feb 03.
Article En | MEDLINE | ID: mdl-36737441

Exercise training is a key countermeasure used to offset spaceflight-induced multisystem deconditioning. Here, we evaluated the effects of exercise countermeasures on multisystem function in a large cohort (N = 46) of astronauts on long-duration spaceflight missions. We found that during 178 ± 48 d of spaceflight, ~600 min/wk of aerobic and resistance exercise did not fully protect against multisystem deconditioning. However, substantial inter-individual heterogeneity in multisystem response was apparent with changes from pre to postflight ranging from -30% to +5%. We estimated that up to 17% of astronauts would experience performance-limiting deconditioning if current exercise countermeasures were used on future spaceflight missions. These findings support the need for refinement of current countermeasures, adjunct interventions, or enhanced requirements for preflight physiologic and functional capacity for the protection of astronaut health and performance during exploration missions to the moon and beyond.

4.
Front Physiol ; 13: 932425, 2022.
Article En | MEDLINE | ID: mdl-36304582

Long duration spaceflight missions will require novel exercise systems to protect astronaut crew from the detrimental effects of microgravity exposure. The SPRINT protocol is a novel and promising exercise prescription that combines aerobic and resistive training using a flywheel device, and it was successfully employed in a 70-day bed-rest study as well as onboard the International Space Station. Our team created a VR simulation to further augment the SPRINT protocol when using a flywheel ergometer training device (the Multi-Mode Exercise Device or M-MED). The simulation aspired to maximal realism in a virtual river setting while providing real-time biometric feedback on heart rate performance to subjects. In this pilot study, five healthy, male, physically-active subjects aged 35 ± 9.0 years old underwent 2 weeks of SPRINT protocol, either with or without the VR simulation. After a 1-month washout period, subjects returned for a subsequent 2 weeks in the opposite VR condition. We measured physiological and cognitive variables of stress, performance, and well-being. While physiological effects did not suggest much difference with the VR condition over 2 weeks, metrics of motivation, affect, and mood restoration showed detectable differences, or trended toward more positive outcomes than exercise without VR. These results provide evidence that a well-designed VR "exergaming" simulation with biometric feedback could be a beneficial addition to exercise prescriptions, especially if users are exposed to isolation and confinement.

5.
iScience ; 24(4): 102344, 2021 Apr 23.
Article En | MEDLINE | ID: mdl-33870138

Loss of muscle mass is a major concern for long duration spaceflight. However, due to the need for specialized equipment, muscle size has only been assessed before and after spaceflight where ~20% loss is observed. Here, we demonstrate the utility of teleguided self-ultrasound scanning (Tele-SUS) to accurately monitor leg muscle size in astronauts during spaceflight. Over an average of 168 ± 57 days of spaceflight, 74 Tele-SUS sessions were performed. There were no significant differences between panoramic ultrasound images obtained by astronauts seven days prior to landing and expert sonographer after flight or between change in muscle size assessed by ultrasound and magnetic resonance imaging. These findings extend the current capabilities of ultrasound imaging to allow self-monitoring of muscle size with remote guidance.

6.
Crit Care Explor ; 2(12): e0269, 2020 Dec.
Article En | MEDLINE | ID: mdl-33251515

OBJECTIVES: The time course and magnitude of atrophic remodeling and the effects of an acute rehabilitation program on muscle atrophy are unclear. We sought to characterize bed rest-induced leg muscle atrophy and evaluate the safety and efficacy of an acute rehabilitation program. DESIGN: Prespecified analysis of a randomized controlled trial. SETTING: Single-center urban hospital. PATIENTS: Adults (24-55 yr) randomized to 70 days of sedentary bed rest. INTERVENTIONS: The 11-day post-bed rest rehabilitation program consisted of low intensity exercise and progressed to increased aerobic exercise duration, plyometric exercises, and higher intensity resistance exercise. MEASUREMENTS AND MAIN RESULTS: Upper (rectus femoris, vastus lateralis, quadriceps, hamstrings, adductors) and lower leg (medial gastrocnemius, lateral gastrocnemius, and soleus) MRI scans were obtained once before, nine times during, and three times after bed rest to assess muscle cross-sectional area. The magnitude and rate of muscle atrophy and recovery were determined for each muscle. Nine participants completed 70 days of sedentary bed rest and an 11-day rehabilitation program. A total of 11,588 muscle cross-sectional area images were quantified. Across all muscles except the rectus femoris (no change), there was a linear decline during bed rest, with the highest atrophic rate occurring in the soleus (-0.33%/d). Following rehabilitation, there was rapid recovery in all muscles; however, the quadriceps (-3.74 cm2; 95% CI, -7.36 to -0.12; p = 0.04), hamstrings (-2.30 cm2; 95% CI, -4.07 to -0.54; p = 0.01), medial gastrocnemius (-0.62 cm2; 95% CI, -1.10 to -0.14; p = 0.01), and soleus (-1.85 cm2; 95% CI, -2.90 to -0.81; p < 0.01) remained significantly lower than baseline. CONCLUSIONS: Bed rest results in upper and lower leg muscle atrophy in a linear pattern, and an 11-day rehabilitation program was safe and effective in initiating a rapid trajectory of muscle recovery. These findings provide important information regarding the design and refinement of rehabilitation programs following bed rest.

7.
NPJ Microgravity ; 6: 21, 2020.
Article En | MEDLINE | ID: mdl-32864428

Historically, International Space Station (ISS) exercise countermeasures have not fully protected astronauts' musculoskeletal and cardiorespiratory fitness. Although these losses have been reduced on more recent missions, decreasing the time required to perform in-flight exercise would permit reallocation of that time to other tasks. To evaluate the effectiveness of a new training prescription, ISS crewmembers performed either the high intensity/lower volume integrated Sprint resistance (3 d wk-1) and aerobic (interval and continuous workouts, each 3 d wk-1 in alternating fashion) exercise program (n = 9: 8M/1F, 48 ± 7 y, 178 ± 5 cm, 77.7 ± 12.0 kg) or the standard ISS countermeasure consisting of daily resistance and aerobic exercise (n = 17: 14M/3F, 46 ± 6 y, 176 ± 6 cm, 80.6 ± 10.5 kg) during long-duration spaceflight. Bone mineral density (dual energy X-ray absorptiometry (DXA)), muscle strength (isokinetic dynamometry), muscle function (cone agility test), and cardiorespiratory fitness (VO2peak) were assessed pre- and postflight. Mixed-effects modeling was used to analyze dependent measures with alpha set at P < 0.05. After spaceflight, femoral neck bone mineral density (-1.7%), knee extensor peak torque (-5.8%), cone agility test time (+7.4%), and VO2peak (-6.1%) were decreased in both groups (simple main effects of time, all P < 0.05) with a few group × time interaction effects detected for which Sprint experienced either attenuated or no loss compared to control. Although physiologic outcomes were not appreciably different between the two exercise programs, to conserve time and optimally prepare crewmembers for the performance of physically demanding mission tasks, high intensity/lower volume training should be an indispensable component of spaceflight exercise countermeasure prescriptions.

8.
Front Physiol ; 11: 863, 2020.
Article En | MEDLINE | ID: mdl-32848835

Introduction: Chronic exposure to the weightlessness-induced cephalad fluid shift is hypothesized to be a primary contributor to the development of spaceflight-associated neuro-ocular syndrome (SANS) and may be associated with an increased risk of venous thrombosis in the jugular vein. This study characterized the relationship between gravitational level (Gz-level) and acute vascular changes. Methods: Internal jugular vein (IJV) cross-sectional area, inferior vena cava (IVC) diameter, and common carotid artery (CCA) flow were measured using ultrasound in nine subjects (5F, 4M) while seated when exposed to 1.00-Gz, 0.75-Gz, 0.50-Gz, and 0.25-Gz during parabolic flight and while supine before flight (0-G analog). Additionally, IJV flow patterns were characterized. Results: IJV cross-sectional area progressively increased from 12 (95% CI: 9-16) mm2 during 1.00-Gz seated to 24 (13-35), 34 (21-46), 68 (40-97), and 103 (75-131) mm2 during 0.75-Gz, 0.50-Gz, and 0.25-Gz seated and 1.00-Gz supine, respectively. Also, IJV flow pattern shifted from the continuous forward flow observed during 1.00-Gz and 0.75-Gz seated to pulsatile flow during 0.50-Gz seated, 0.25-Gz seated, and 1.00-Gz supine. In contrast, we were unable to detect differences in IVC diameter measured during 1.00-G seated and any level of partial gravity or during 1.00-Gz supine. CCA blood flow during 1.00-G seated was significantly less than 0.75-Gz and 1.00-Gz supine but differences were not detected at partial gravity levels 0.50-Gz and 0.25-Gz. Conclusions: Acute exposure to decreasing Gz-levels is associated with an expansion of the IJV and flow patterns that become similar to those observed in supine subjects and in astronauts during spaceflight. These data suggest that Gz-levels greater than 0.50-Gz may be required to reduce the weightlessness-induced headward fluid shift that may contribute to the risks of SANS and venous thrombosis during spaceflight.

9.
J Strength Cond Res ; 34(9): 2434-2442, 2020 Sep.
Article En | MEDLINE | ID: mdl-32732774

Feltz, DL, Hill, CR, Samendinger, S, Myers, ND, Pivarnik, JM, Winn, B, Ede, A, and Ploutz-Snyder, L. Can simulated partners boost workout effort in long-term exercise? J Strength Cond Res 34(9): 2434-2442, 2020-We tested whether exercising with a stronger simulated (i.e., software-generated) partner leads to greater work effort compared to exercising alone, to help those seeking to maintain or improve fitness levels with long-term high-intensity training, but who find it necessary or practical to exercise in social isolation. Forty-one middle-aged adults, who participated in at least 30 minutes of vigorous exercise 3x·wk, trained on a cycle ergometer 6 days per week for 24 weeks in an alternating regimen of moderate-intensity 30-minute continuous and 3 types of high-intensity interval sessions (8 × 30-second sprints, 6 × 2-minute ladders, and 4 × 4-minute intervals). They were assigned either no partner (control), an always superior partner, or a not always superior partner. Participants varied cycle power output to increase or decrease session intensity during the repeated moderate-intensity sessions (30-minute continuous) and 1 of the 3 high-intensity sessions (4 × 4-minute intervals). Changes in intensity were used as a measure of effort motivation over time. Nested multilevel models of effort trajectory were developed and alpha was set to 0.05. For continuous and interval sessions, effort trajectory was positive and significant for those with an always superior partner, but not significantly different from control. Within interval sessions, those with an always superior partner significantly increased effort in the fourth interval compared to control (p = 0.02). Exercising with an always superior partner leads to greater work efforts during the hardest interval training compared to exercising alone.


Bicycling/physiology , High-Intensity Interval Training/methods , Virtual Reality , Adult , Female , Humans , Male , Middle Aged , Motivation , Oxygen Consumption
10.
Life Sci Space Res (Amst) ; 26: 97-104, 2020 Aug.
Article En | MEDLINE | ID: mdl-32718692

BACKGROUND/OBJECTIVES: Exercise is a front-line countermeasure used to maintain astronaut health during long-duration spaceflight; however, reductions in metabolic health still occur. Accordingly, we evaluated serial changes in metabolic parameters in a spaceflight analog and evaluated the efficacy of exercise with or without the addition of low-dose testosterone treatment on mitigating adverse metabolic changes. SUBJECTS/METHODS: Healthy young (<55 years) men were randomly assigned to one of three groups during 70-days of strict, diet controlled, 6° head-down bed rest: Control (CON, n=9), exercise plus testosterone countermeasure (TEX, n=8), or exercise countermeasure plus placebo (PEX, n=9). Basal metabolic rate (BMR), glucose tolerance, and insulin sensitivity were measured before, during, and after bed rest. Exercise energy expenditure and excess post-exercise oxygen consumption were measured in TEX and PEX subjects during bed rest. RESULTS: Leptin decreased during bed rest (Pre to BR+0 changed from 6.9 ± 5.1, 5.8 ± 4.2, and 4.7 ± 4.1 to 7.9 ±3.6, 6.5 ± 4.6, and 4.1 ±3.0 ug• L-1 for CON, PEX, and TEX respectively). Bed rest induced a decrease in BMR (Pre to BR57 changed from 1655 ± 212, 1629 ± 108, and 1706 ± 146 to 1476 ± 166, 1668 ± 142, and 1603 ± 132 kcal • day-1 ± 95%CI for CON, PEX, and TEX respectively). Similarly, bed rest negatively affected glucose metabolism assessed by 2hr OGTT glucose (Pre to BR66 changed from 6.29 ± 0.72, 5.13 ± 0.72, and 5.87 ± 0.73 to 6.62 ± 0.72, 5.83 ± 0.72, and 7.08 ± 0.72 mmol • L-1 ± 95%CI). Reambulation following bed rest positively affected glucose tolerance in CON (2hr OGTT glucose at BR+12: 5.3 ± 0.72, 6.42 ± 0.73, and 6.04 ± 0.73 mmol • L-1 ± 95%CI). Testosterone protected against bed rest induced insulin resistance (HOMA-IR from Pre to BR+66 changed from 1.74 ± 0.54, 1.18 ± 0.55, and 1.45 ± 0.56 to 2.24 ± 0.56, 1.47 ± 0.54, and 1.07 ± 0.54). CONCLUSION: This study confirmed that inactivity during 70 days of head-down bed rest adversely affects metabolic health. The daily exercise countermeasures were beneficial but not completely protective of bed rest induced decrements in metabolic health. Supplementary countermeasures such as testosterone may provide additional benefits not provided by exercise alone.


Bed Rest , Exercise/physiology , Testosterone/therapeutic use , Weightlessness Simulation , Adult , Humans , Male , Middle Aged , Young Adult
11.
Compr Physiol ; 10(1): 171-196, 2019 12 18.
Article En | MEDLINE | ID: mdl-31853963

The mechanical unloading of spaceflight elicits a host of physiological adaptations including reductions in muscle mass, muscle strength, and muscle function and alterations in central interpretation of visual, vestibular, and proprioceptive information. Upon return to a terrestrial, gravitational environment, these result in reduced function and performance, the potential consequences of which will be exacerbated during exploration missions to austere and distant destinations such as the moon and Mars. Exercise is a potent countermeasure to unloading-induced physiological maladaptations and has been employed since the early days of spaceflight. In-flight exercise hardware has evolved from rudimentary and largely ineffective devices to the current suite onboard the International Space Station (ISS) comprised of a cycle ergometer, treadmill, and resistance exercise device; these contemporary devices have either fully protected or significantly attenuated neuromuscular degradation in spaceflight. However, unlike current microgravity operations on the ISS, future exploration missions will include surface operations in partial gravity environments, which will require greater physiological capacity and work output of their crews. For these flights, it is critical to identify physiological thresholds below which task performance will be impaired and to develop exercise countermeasures-both pre- and in-flight-to ensure that crewmembers are able to safely and effectively complete physically demanding mission objectives. © 2020 American Physiological Society. Compr Physiol 10:171-196, 2020.


Exercise , Neuromuscular Diseases/prevention & control , Space Flight , Animals , Bed Rest , Humans , Muscle, Skeletal/physiology
12.
J Sport Health Sci ; 8(3): 289-297, 2019 May.
Article En | MEDLINE | ID: mdl-31193273

BACKGROUND: The effect of the Köhler group dynamics paradigm (i.e., working together with a more capable partner where one's performance is indispensable to the team outcome) has been shown to increase motivation to exercise longer at a strength task in partnered exercise video games (exergames) using a software-generated partner (SGP). However, the effect on exercise intensity with an SGP has not been investigated. The purpose of this study was to examine the motivation to maintain or increase exercise intensity among healthy, physically active middle-aged adults using an SGP in an aerobic exergame. METHODS: Participants (n = 85, mean age = 44.9 years) exercised with an SGP in a 6-day cycle ergometer protocol, randomly assigned to either (a) no partner control, (b) superior SGP who was not a teammate, or (c) superior SGP as a teammate (team score was dependent on the inferior member). The protocol alternated between 30-min continuous and 4-min interval high-intensity session days, during which participants could change cycle power output (watts) from target intensity to alter distance and speed. RESULTS: Mean change in watts from a targeted intensity (75% and 90% maximum heart rate) was the primary dependent variable reflecting motivational effort. Increases in performance over baseline were demonstrated without significant differences between conditions. Self-efficacy and enjoyment were significantly related to effort in the more intense interval sessions. CONCLUSION: Under these conditions, no Köhler effect was observed. Exercise performance during the higher-intensity interval format is more closely related to enjoyment and self-efficacy beliefs compared to the continuous sessions.

13.
Eur J Appl Physiol ; 119(7): 1633-1648, 2019 Jul.
Article En | MEDLINE | ID: mdl-31069517

PURPOSE: To identify strength and performance thresholds below which task performance is impaired. METHODS: A new weighted suit system was used to manipulate strength-to-body-weight ratio during the performance of simulated space explorations tasks. Statistical models were used to evaluate various measures of muscle strength and performance on their ability to predict the probability that subjects could complete the tasks in an acceptable amount of time. Thresholds were defined as the point of greatest change in probability per change in the predictor variable. For each task, median time was used to define the boundary between "acceptable" and "unacceptable" completion times. RESULTS: Fitness thresholds for four space explorations tasks were identified using 23 physiological input variables. Area under receiver operator characteristic curves varied from a low of 0.68 to a high of 0.92. CONCLUSION: An experimental analog for altering strength-to-body weight combined with a probability-based statistical model for success was suitable for identifying thresholds for task performance below which tasks could either not be completed or time to completion was unacceptably high. These results provide data for strength recommendations for exploration mission ambulatory task performance. Furthermore, the approach can be used to identify thresholds for other areas where occupationally relevant tasks vary considerably.


Muscle Strength , Physical Functional Performance , Space Suits/standards , Work Performance/standards , Adult , Female , Humans , Male , Physical Endurance , Space Suits/adverse effects
14.
JAMA Ophthalmol ; 137(6): 652-659, 2019 06 01.
Article En | MEDLINE | ID: mdl-30998818

Importance: Astronauts on International Space Station missions demonstrate adverse neuro-ocular changes. Reversing a negative translaminar pressure gradient (TLPG) by modulating cerebral blood flow, decreasing intracranial pressure, or increasing intraocular pressure (IOP) has been proposed as potential intervention for spaceflight-associated neuro-ocular syndrome (SANS). Objective: To examine whether exercise (resistance, moderate-intensity aerobic, and high-intensity aerobic) or artificially increasing IOP is associated with modulated cerebro-ocular hemodynamic and pressure changes during head-down tilt (HDT), an analogue of spaceflight, in healthy adults. Design, Setting, and Participants: A single-center investigation was conducted at Johnson Space Center, Houston, Texas, from January 1, 2014, to December 31, 2016, in 20 healthy men. Exposure: On 3 separate days, participants rested supine, were tilted to -15° HDT, and then completed 1 of 3 experimental exercise conditions (moderate-intensity aerobic, resistance, or high-intensity interval aerobic). A subset of 10 participants wore swimming goggles on all days. Main Outcomes and Measures: Applanation rebound tonometry was used to noninvasively assess IOP, and compression sonography was used to assess internal jugular venous pressure (IJVP). Estimated TLPG was calculated as the difference between IOP and IJVP. Cerebral inflow and outflow were measured in extracranial arteries using color-coded duplex ultrasonography. Results: Twenty men participated in the study (mean [SD] age, 36 [9] years). Compared with supine IOP (mean [SD], 19.3 [3.7] mm Hg), IJVP (mean [SD], 21.4 [6.0] mm Hg), and estimated TLPG (mean [SD], -2.1 [7.0] mm Hg), -15° HDT was associated with increased IOP (mean difference, 2.3 mm Hg; 95% CI, 1.4-3.3 mm Hg; P < .001) and IJVP (mean difference, 10.5 mm Hg; 95% CI, 8.9-12.2 mm Hg; P < .001) and with decreased TLPG (mean difference, -8.2 mm Hg; 95% CI, -10.1 to -6.3 mm Hg; P < .001). Exercise (regardless of modality) at -15° HDT was associated with decreased IOP (mean difference, -1.6 mm Hg; 95% CI, -2.6 to -0.6 mm Hg; P = .002) and TLPG (mean difference, -3.5 mm Hg; 95% CI, -6.2 to -0.7 mm Hg; P = .01) compared with rest. Both IOP (mean difference, 2.9 mm Hg; 95% CI, 0.7-5.1 mm Hg; P = .01) and TLPG (mean difference, 5.1 mm Hg; 95% CI, 0.8-9.4 mm Hg; P = .02) were higher in participants who wore swimming goggles compared with those not wearing goggles. Conclusions and Relevance: In this study, exercise was associated with decreased IOP and estimated translaminar pressure gradient in a spaceflight analogue of HDT. The addition of swimming goggles was associated with increased IOP and TLPG in HDT. Further evaluation in spaceflight may be warranted to determine whether modestly increasing IOP is an effective SANS countermeasure.


Cerebrovascular Circulation/physiology , Exercise/physiology , Eye Diseases/physiopathology , Eye Protective Devices , Eye/blood supply , Intracranial Hypertension/physiopathology , Intraocular Pressure/physiology , Adult , Head-Down Tilt/physiology , Hemodynamics/physiology , Humans , Male , Models, Biological , Space Flight , Tonometry, Ocular , Ultrasonography, Doppler, Color
15.
PLoS One ; 13(10): e0205515, 2018.
Article En | MEDLINE | ID: mdl-30308004

PURPOSE: Spaceflight negatively affects sensorimotor behavior; exercise mitigates some of these effects. Head down tilt bed rest (HDBR) induces body unloading and fluid shifts, and is often used to investigate spaceflight effects. Here, we examined whether exercise mitigates effects of 70 days HDBR on the brain and if fitness and brain changes with HDBR are related. METHODS: HDBR subjects were randomized to no-exercise (n = 5) or traditional aerobic and resistance exercise (n = 5). Additionally, a flywheel exercise group was included (n = 8). Exercise protocols for exercise groups were similar in intensity, therefore these groups were pooled in statistical analyses. Pre and post-HDBR MRI (structure and structural/functional connectivity) and physical fitness measures (lower body strength, muscle cross sectional area, VO2 max, body composition) were collected. Voxel-wise permutation analyses were used to test group differences in brain changes, and their associations with fitness changes. RESULTS: Comparisons of exercisers to controls revealed that exercise led to smaller fitness deterioration with HDBR but did not affect brain volume or connectivity. Group comparisons showed that exercise modulated post-HDBR recovery of brain connectivity in somatosensory regions. Posthoc analysis showed that this was related to functional connectivity decrease with HDBR in non-exercisers but not in exercisers. Correlational analyses between fitness and brain changes showed that fitness decreases were associated with functional connectivity and volumetric increases (all r >.74), potentially reflecting compensation. Modest brain changes or even decreases in connectivity and volume were observed in subjects who maintained or showed small fitness gains. These results did not survive Bonferroni correction, but can be considered meaningful because of the large effect sizes. CONCLUSION: Exercise performed during HDBR mitigates declines in fitness and strength. Associations between fitness and brain connectivity and volume changes, although unadjusted for multiple comparisons in this small sample, suggest that supine exercise reduces compensatory HDBR-induced brain changes.


Bed Rest/adverse effects , Brain/pathology , Brain/physiopathology , Exercise Therapy , Exercise/physiology , Adult , Body Composition , Brain/diagnostic imaging , Head-Down Tilt , Humans , Longitudinal Studies , Male , Muscle Strength , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Neural Pathways/physiopathology , Organ Size , Physical Fitness , Weightlessness Simulation
16.
Med Sci Sports Exerc ; 50(9): 1929-1939, 2018 09.
Article En | MEDLINE | ID: mdl-29924745

INTRODUCTION: Prolonged confinement to head-down bed rest (HDBR) results in musculoskeletal losses similar to those observed during long-duration space flight. Exercise countermeasures by themselves have not completely prevented the deleterious losses in muscle mass or function in HDBR or space flight. PURPOSE: The objective was to investigate the safety and efficacy of intermittent, low-dose testosterone treatment in conjunction with NASA exercise (SPRINT) countermeasures during 70 d of 6° HDBR. METHODS: Healthy men (35 ± 8 yr) were randomized into one of three groups that remained inactive (CON) or performed exercise 6 d·wk in addition to receiving either placebo (PEX) or testosterone treatment (TEX, 100 mg·wk). Testosterone/placebo injections were administered once a week for 2 wk, followed by 2 wk off and so on, during HDBR. RESULTS: Total, leg, and trunk lean body mass (LBM) consistently decreased in CON, increased in TEX, and had little or no changes in PEX. Total, leg, and trunk fat mass consistently increased in CON and PEX and decreased in TEX. Leg strength decreased in CON, whereas PEX and TEX were protected against loss in strength. Changes in leg LBM correlated positively with changes in leg muscle strength. CONCLUSIONS: Addition of a testosterone countermeasure enhanced the preventative actions of exercise against body composition changes during long-term HDBR in healthy eugonadal men. This is the first report to demonstrate that cycled, low-dose testosterone treatment increases LBM under conditions of strict exercise control. These results are clinically relevant to the development of safe and effective therapies against muscle atrophy during long-term bed rest, aging, and disease where loss of muscle mass and strength is a risk. The potential space flight applications of such countermeasure combinations deserve further investigations.


Bed Rest , Exercise Therapy , Muscular Atrophy/prevention & control , Testosterone/therapeutic use , Adult , Humans , Male , Middle Aged , Space Flight , United States , United States National Aeronautics and Space Administration , Weightlessness Simulation
17.
Med Sci Sports Exerc ; 50(9): 1920-1928, 2018 09.
Article En | MEDLINE | ID: mdl-29924746

INTRODUCTION: This study investigated the safety and effectiveness of a new integrated aerobic and resistance exercise training prescription (SPRINT) using two different sets of exercise equipment: a suite of large International Space Station-like exercise equipment similar to what is found on the International Space Station and a single device with aerobic and resistance exercise capability in the spaceflight analog of bed rest (BR). METHODS: Subjects (n = 34) completed 70 d of 6° head down tilt BR: 9 were randomized to remain sedentary (CONT), 9 to exercise training using traditional equipment (EX), 8 to exercise using traditional equipment and low-dose testosterone supplementation (ExT), and 8 to exercise using a combined resistance and aerobic flywheel device. Peak aerobic capacity, ventilatory threshold, cardiac morphology and function (echocardiography), muscle mass (magnetic resonance imaging) and strength/power (isokinetic, leg press, and vertical jump), and bone health (bone mineral density, blood and urine bone markers) were assessed before and after BR. RESULTS: The SPRINT protocol mitigated BR-induced muscle and cardiac deconditioning regardless of the exercise device used. Molecular markers of bone did not change in the CONT or EX groups. Peak aerobic capacity was maintained from pre- to post-BR in all exercise groups similarly, whereas significant declines were observed in the CONT group (~10%). Significant interaction effects between the CONT group and all EX groups were observed for muscle performance including leg press total work, isokinetic upper and lower leg strength, vertical jump power, and maximal jump height as well as muscle size. CONCLUSIONS: This is the first trial to evaluate multisystem deconditioning and the role of an integrated exercise countermeasure. These findings have important implications for the design and implementation of exercise-based countermeasures on future long-duration spaceflight missions.


Bed Rest , Exercise , Resistance Training , Space Flight , Weightlessness Simulation , Adult , Body Composition , Bone Density , Female , Head-Down Tilt , Humans , Male , Muscle Strength , Oxygen Consumption , Testosterone/administration & dosage , United States , United States National Aeronautics and Space Administration
18.
Med Sci Sports Exerc ; 50(9): 1961-1980, 2018 09.
Article En | MEDLINE | ID: mdl-29620686

INTRODUCTION: Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. METHODS: A test battery comprised of seven functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular, and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 d of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included control and exercise groups to examine the effects of exercise during bed rest. RESULTS: Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased HR to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function; however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. CONCLUSION: Bed rest data indicate that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular functions, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is required to maintain functional performance.


Adaptation, Physiological , Bed Rest , Postural Balance , Space Flight , Task Performance and Analysis , Weightlessness , Adult , Astronauts , Exercise , Exercise Test , Female , Humans , Male , Middle Aged
19.
Med Sci Sports Exerc ; 50(9): 1909-1919, 2018 09.
Article En | MEDLINE | ID: mdl-29570535

PURPOSE: The purpose of this article was to provide an overview of the National Aeronautics and Space Administration (NASA) 70-day Bed Rest Study. The integrated complement of investigations and the standardized bed rest environment that served as the platform for this study complement are described. Outcomes of the studies will not be presented here but will be reported in separate publications. METHODS: A set of studies running in an integrated fashion along the entire period (pre-, in-, and post-bed rest) and using the same subjects is referred in this article as "the campaign" or "complement." NASA selected eight individual studies to participate in the 70-d bed rest campaign. These studies were integrated to increase efficiency in the utilization of resources and to share common measures among the investigations. In addition to the individual studies addressing specific aims, a battery of standardized measures was included. Standard measures target a wide range of physiologic systems and represent some of the testing routinely done on astronauts. Bed rest subjects underwent rigorous medical and psychological screening. Standardized conditions included 70 d of bed rest in a 6° head-down tilt position. Subjects' vital signs, body weight, and fluid intake and output were measured daily. A standardized diet was provided to ensure consistent nutritional intake across subjects. Exercising subjects were prescribed individualized aerobic and resistance training 6 d·wk performed in a horizontal body position. Subjects in the testosterone supplementation countermeasure group received testosterone enanthate injections at 2-wk intervals during bed rest. CONCLUSION: Long-duration head-down tilt bed rest provided a suitable platform for examining physiologic effects of spaceflight and testing countermeasures in a ground-based model. Integrating studies into a complement is an effective way to support multiple investigations while minimizing the number of subjects to answer many research questions.


Bed Rest , Head-Down Tilt , Space Flight , Adult , Exercise , Female , Humans , Male , Resistance Training , Testosterone/administration & dosage , Time Factors , United States , United States National Aeronautics and Space Administration , Weightlessness Simulation
20.
Med Sci Sports Exerc ; 50(9): 1950-1960, 2018 09.
Article En | MEDLINE | ID: mdl-29570537

PURPOSE: This investigation evaluated myocellular responses to an integrated resistance and aerobic training program during 70 d of bed rest. METHODS: Training was 6 d·wk on a small-footprint gravity-independent flywheel resistance and aerobic device; 3 d of maximal flywheel supine quadriceps and calf exercises with continuous rowing separated by 4 to 6 h, and 3 d of interval rowing. Vastus lateralis (VL) and soleus (SOL) muscle biopsies were obtained from eight healthy males (age, 28 ± 4 yr; BMI, 25 ± 3 kg·m; V˙O2max, 42 ± 6 mL·kg·min) before and after 6° head-down tilt bed rest. Vastus lateralis and SOL myosin heavy chain (MHC) I and IIa single muscle fiber size and functional characteristics, as well as overall fiber type distribution, capillarization, and metabolic enzyme activities were evaluated. RESULTS: In the VL, MHC I size and power (absolute and normalized) were preserved. The MHC IIa fibers hypertrophied (+6%, P < 0.05) without a change in absolute power, so normalized power declined (-7%, P < 0.05). In the SOL, MHC I fibers atrophied (-9%) and absolute power declined (-17%) (P < 0.05), whereas normalized power was maintained. Size, absolute power, and normalized power were protected in the less-abundant MHC IIa fibers. Reduced MHC coexpressing hybrid fibers, generally indicative of an exercise training effect, was apparent in the VL, whereas fiber type was maintained in the SOL. Capillarization and metabolic enzymes were generally preserved or increased in VL and SOL. CONCLUSIONS: The integrated resistance and aerobic training protocol on a device maintains several key myocellular characteristics during prolonged unloading, but further refinement of the exercise approach to fully protect the SOL is warranted.


Bed Rest , Exercise Therapy , Muscle Fibers, Skeletal , Muscle, Skeletal/physiopathology , Quadriceps Muscle/physiopathology , Resistance Training , Adult , Biopsy , Head-Down Tilt , Humans , Male , Myosin Heavy Chains , Young Adult
...