Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Mol Plant Microbe Interact ; 37(2): 112-126, 2024 Feb.
Article En | MEDLINE | ID: mdl-37903461

Several elicitors of plant defense have been identified and numerous efforts to use them in the field have been made. Exogenous elicitor treatments mimic the in planta activation of pattern-triggered immunity (PTI), which relies on the perception of pathogen-associated molecular patterns (PAMPs) such as bacterial flg22 or fungal chitins. Early transcriptional responses to distinct PAMPs are mostly overlapping, regardless of the elicitor being used. However, it remains poorly known if the same patterns are observed for metabolites and proteins produced later during PTI. In addition, little is known about the impact of a combination of elicitors on PTI and the level of induced resistance to pathogens. Here, we monitored Arabidopsis thaliana resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) following application of flg22 and chitosan elicitors, used individually or in combination. A slight, but not statistically significant increase in induced resistance was observed when the elicitors were applied together when compared with individual treatments. We investigated the effect of these treatments on the metabolome by using an untargeted analysis. We found that the combination of flg22 and chitosan impacted a higher number of metabolites and deregulated specific metabolic pathways compared with the elicitors individually. These results contribute to a better understanding of plant responses to elicitors, which might help better rationalize their use in the field. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Arabidopsis Proteins , Arabidopsis , Chitosan , Arabidopsis/microbiology , Plant Immunity , Chitosan/pharmacology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Metabolome , Pseudomonas syringae/physiology , Plant Diseases/microbiology , Gene Expression Regulation, Plant
2.
BMC Plant Biol ; 23(1): 401, 2023 Aug 23.
Article En | MEDLINE | ID: mdl-37612632

BACKGROUND: Inorganic phosphate (Pi) is the sole source of phosphorus for plants. It is a limiting factor for plant yield in most soils worldwide. Due to economic and environmental constraints, the use of Pi fertilizer is and will be more and more limited. Unfortunately, evaluation of Pi bioavailability or Pi starvation traits remains a tedious task, which often does not inform us about the real Pi plant status. RESULTS: Here, we identified by transcriptomic studies carried out in the plant model Arabidopsis thaliana, early roots- or leaves-conserved molecular markers for Pi starvation, exhibiting fast response to modifications of phosphate nutritional status. We identified their homologues in three crops (wheat, rapeseed, and maize) and demonstrated that they offer a reliable opportunity to monitor the actual plant internal Pi status. They turn out to be very sensitive in the concentration range of 0-50 µM which is the most common case in the vast majority of soils and situations where Pi hardly accumulates in plants. Besides in vitro conditions, they could also be validated for plants growing in the greenhouse or in open field conditions. CONCLUSION: These markers provide valuable physiological tools for plant physiologists and breeders to assess phosphate bio-availability impact on plant growth in their studies. This also offers the opportunity to cope with the rising economical (shortage) and societal problems (pollution) resulting from the management of this critical natural resource.


Arabidopsis , Crops, Agricultural , Biomarkers , Crops, Agricultural/genetics , Phenotype , Arabidopsis/genetics , Phosphates
3.
Plants (Basel) ; 12(13)2023 Jul 07.
Article En | MEDLINE | ID: mdl-37447134

Boron (B) is an essential micronutrient for plants, and its deficiency is a widespread nutritional disorder, particularly in high-demanding crops like Brassica napus. Over the past few decades, silicon (Si) has been shown to mitigate plant nutrient deficiencies of different macro- and micro-nutrients. However, the work on B and Si cross-talk has mostly been focused on the alleviation of B toxicity by Si application. In the present study, we investigated the effect of Si application on rapeseed plants grown hydroponically under long-term B deficiency (20 days at 0.1 µM B). In addition, a B-uptake labelling experiment was conducted, and the expression of the genes involved in B uptake were monitored between 2 and 15 days of B shortage. The results showed that Si significantly improved rapeseed plant growth under B deficiency by 34% and 49% in shoots and roots, respectively. It also increased the expression level of BnaNIP5;1 and BOR1;2c in both young leaves and roots. The uptake labelling experiment showed the remobilization of previously fixed 11B from old leaves to new tissues. This study provides additional evidence of the beneficial effects of Si under conditions lacking B by changing the expression of the BnaNIP5;1 gene and by remobilizing 11B to young tissues.

4.
Plant Direct ; 6(8): e402, 2022 Aug.
Article En | MEDLINE | ID: mdl-35949952

One of the main limiting factors of plant yield is drought, and while the physiological responses to this environmental stress have been broadly described, research addressing its impact on mineral nutrition is scarce. Brassica napus and Triticum aestivum were subjected to moderate or severe water deficit, and their responses to drought were assessed by functional ionomic analysis, and derived calculation of the net uptake of 20 nutrients. While the uptake of most mineral nutrients decreased, Fe, Zn, Mn, and Mo uptake were impacted earlier and at a larger scale than most physiological parameters assessed (growth, ABA concentration, gas exchanges and photosynthetic activity). Additionally, in B. napus, the patterns of 183 differentially expressed genes in leaves related to the ionome (known ionomic genes, KIGs) or assumed to be involved in transport of a given nutrient were analyzed. This revealed three patterns of gene expression under drought consisting of up (transport of Cl and Co), down (transport of N, P, B, Mo, and Ni), or mixed levels (transport of S, Mg, K, Zn, Fe, Cu, or Mn) of regulation. The three patterns of gene regulations are discussed in relation to specific gene functions, changes of leaf ionomic composition and with consideration of the crosstalks that have been established between elements. It is suggested that the observed reduction in Fe uptake occurred via a specific response to drought, leading indirectly to reduced uptake of Zn and Mn, and these may be taken up by common transporters encoded by genes that were downregulated.

5.
Front Plant Sci ; 13: 785791, 2022.
Article En | MEDLINE | ID: mdl-35592558

Aluminum (Al) is a major limiting factor for crop production on acidic soils, inhibiting root growth and plant development. At acidic pH (pH < 5.5), Al3+ ions are the main form of Al present in the media. Al3+ ions have an increased solubility at pH < 5.5 and result in plant toxicity. At higher pH, the free Al3+ fraction decreases in the media, but whether plants can detect Al at these pHs remain unknown. To cope with Al stress, the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) transcription factor induces AL-ACTIVATED MALATE TRANSPORTER1 (ALMT1), a malate-exuding transporter as a strategy to chelate the toxic ions in the rhizosphere. Here, we uncoupled the Al signalling pathway that controls STOP1 from Al toxicity using wild type (WT) and two stop1 mutants carrying the pALMT1:GUS construct with an agar powder naturally containing low amounts of phosphate, iron (Fe), and Al. We combined gene expression [real-time PCR (RT-PCR) and the pALMT1:GUS reporter], confocal microscopy (pSTOP1:GFP-STOP1 reporter), and root growth measurement to assess the effects of Al and Fe on the STOP1-ALMT1 pathway in roots. Our results show that Al triggers STOP1 signaling at a concentration as little as 2 µM and can be detected at a pH above 6.0. We observed that at pH 5.7, 20 µM AlCl3 induces ALMT1 in WT but does not inhibit root growth in stop1 Al-hypersensitive mutants. Increasing AlCl3 concentration (>50 µM) at pH 5.7 results in the inhibition of the stop1 mutants primary root. Using the green fluorescent protein (GFP)-STOP1 and ALMT1 reporters, we show that the Al signal pathway can be uncoupled from the Al toxicity on the root. Furthermore, we observe that Al strengthens the Fe-mediated inhibition of primary root growth in WT, suggesting an interaction between Fe and Al on the STOP1-ALMT1 pathway.

6.
Int J Mol Sci ; 23(2)2022 Jan 11.
Article En | MEDLINE | ID: mdl-35054964

While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, Brassica napus plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit. Gene ontology enrichment analysis of the 11,747 DEGs identified revealed that ion transport was one of the most significant processes affected, even under mild water deficit, and this was also confirmed by the shift in ionomic composition (mostly micronutrients with a strong decrease in Mo, Fe, Zn, and Mn in leaves) that occurred well before growth reduction. The metabolomic data and most of the transcriptomic data suggested that well-known early leaf responses to drought such as phytohormone metabolism (ABA and JA), proline accumulation, and oxidative stress defense were induced later than repression of genes related to nutrient transport.


Brassica napus/physiology , Droughts , Metabolome , Minerals/metabolism , Plant Leaves/physiology , Plant Physiological Phenomena , Transcriptome , Computational Biology/methods , Energy Metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Models, Biological , Stress, Physiological/genetics
7.
Front Plant Sci ; 13: 1089720, 2022.
Article En | MEDLINE | ID: mdl-36762182

Introduction: Peas, as legume crops, could play a major role in the future of food security in the context of worldwide human nutrient deficiencies coupled with the growing need to reduce consumption of animal products. However, pea yields, in terms of quantity and quality (i.e. grain content), are both susceptible to climate change, and more specifically to water deficits, which nowadays occur more frequently during crop growth cycles and tend to last longer. The impact of soil water stress on plant development and plant growth is complex, as its impact varies depending on soil water availability (through the modulation of elements available in the soil), and by the plant's ability to acclimate to continuous stress or to memorize previous stress events. Method: To identify the strategies underlying these plant responses to water stress events, pea plants were grown in controlled conditions under optimal water treatment and different types of water stress; transient (during vegetative or reproductive periods), recurrent, and continuous (throughout the plant growth cycle). Traits related to water, carbon, and ionome uptake and uses were measured and allowed the identification typical plant strategies to cope with water stress. Conclusion: Our results highlighted (i) the common responses to the three types of water stress in shoots, involving manganese (Mn) in particular, (ii) the potential implications of boron (B) for root architecture modification under continuous stress, and (iii) the establishment of an "ecophysiological imprint" in the root system via an increase in nodule numbers during the recovery period.

8.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article En | MEDLINE | ID: mdl-34769110

The early and specific diagnosis of a macronutrient deficiency is challenging when seeking to better manage fertilizer inputs in the context of sustainable agriculture. Consequently, this study explored the potential for transcriptomic and metabolomic analysis of Brassica napus roots to characterize the effects of six individual macronutrient deprivations (N, Mg, P, S, K, and Ca). Our results showed that before any visual phenotypic response, all macronutrient deprivations led to a large modulation of the transcriptome and metabolome involved in various metabolic pathways, and some were common to all macronutrient deprivations. Significantly, comparative transcriptomic analysis allowed the definition of a subset of 3282, 2011, 6325, 1384, 439, and 5157 differentially expressed genes (DEGs) specific to N, Mg, P, S, K, and Ca deprivations, respectively. Surprisingly, gene ontology term enrichment analysis performed on this subset of specific DEGs highlighted biological processes that are common to a number of these macronutrient deprivations, illustrating the complexity of nutrient interactions. In addition, a set of 38 biochemical compounds that discriminated the macronutrient deprivations was identified using a metabolic approach. The opportunity to use these specific DEGs and/or biochemical compounds as potential molecular indicators to diagnose macronutrient deficiency is discussed.


Brassica napus/metabolism , Metabolome , Nutrients/deficiency , Plant Roots/metabolism , Stress, Physiological , Nutritive Value , Proteomics
9.
Plant J ; 108(5): 1507-1521, 2021 12.
Article En | MEDLINE | ID: mdl-34612534

STOP1, an Arabidopsis transcription factor favouring root growth tolerance against Al toxicity, acts in the response to iron under low Pi (-Pi). Previous studies have shown that Al and Fe regulate the stability and accumulation of STOP1 in roots, and that the STOP1 protein is sumoylated by an unknown E3 ligase. Here, using a forward genetics suppressor screen, we identified the E3 SUMO (small ubiquitin-like modifier) ligase SIZ1 as a modulator of STOP1 signalling. Mutations in SIZ1 increase the expression of ALMT1 (a direct target of STOP1) and root growth responses to Al and Fe stress in a STOP1-dependent manner. Moreover, loss-of-function mutations in SIZ1 enhance the abundance of STOP1 in the root tip. However, no sumoylated STOP1 protein was detected by Western blot analysis in our sumoylation assay in Escherichia coli, suggesting the presence of a more sophisticated mechanism. We conclude that the sumo ligase SIZ1 negatively regulates STOP1 signalling, at least in part by modulating STOP1 protein in the root tip. Our results will allow a better understanding of this signalling pathway.


Aluminum/toxicity , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Iron/toxicity , Ligases/metabolism , Signal Transduction , Transcription Factors/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Ligases/genetics , Mutation , Plant Roots/genetics , Plant Roots/physiology , Stress, Physiological , Sumoylation , Transcription Factors/genetics
10.
Front Plant Sci ; 12: 681895, 2021.
Article En | MEDLINE | ID: mdl-34484256

Potassium (K) plays a crucial role in plant growth and development and is involved in different physiological and biochemical functions in plants. Brassica napus needs higher amount of nutrients like nitrogen (N), K, phosphorus (P), sulfur (S), and boron (B) than cereal crops. Previous studies in B. napus are mainly focused on the role of N and S or combined deficiencies. Hence, little is known about the response of B. napus to K deficiency. Here, a physiological, biochemical, and molecular analysis led us to investigate the response of hydroponically grown B. napus plants to K deficiency. The results showed that B. napus was highly sensitive to the lack of K. The lower uptake and translocation of K induced BnaHAK5 expression and significantly declined the growth of B. napus after 14 days of K starvation. The lower availability of K was associated with a decrease in the concentration of both S and N and modulated the genes involved in their uptake and transport. In addition, the lack of K induced an increase in Ca2+ and Mg2+ concentration which led partially to the accumulation of positive charge. Moreover, a decrease in the level of arginine as a positively charged amino acid was observed which was correlated with a substantial increase in the polyamine, putrescine (Put). Furthermore, K deficiency induced the expression of BnaNCED3 as a key gene in abscisic acid (ABA) biosynthetic pathway which was associated with an increase in the levels of ABA. Our findings provided a better understanding of the response of B. napus to K starvation and will be useful for considering the importance of K nutrition in this crop.

11.
Physiol Plant ; 173(3): 935-953, 2021 Nov.
Article En | MEDLINE | ID: mdl-34245168

The simultaneous presence of different N-forms in the rhizosphere leads to beneficial effects on nitrogen (N) nutrition in plants. Although widely used as fertilizers, the occurrence of cross connection between urea and ammonium nutrition has been scarcely studied in plants. Maize fed with a mixture of urea and ammonium displayed a better N-uptake efficiency than ammonium- or urea-fed plants (Buoso et al., Plant Physiol Biochem, 2021a; 162: 613-623). Through multiomic approaches, we provide the molecular characterization of maize response to urea and ammonium nutrition. Several transporters and enzymes involved in N-nutrition were upregulated by all three N-treatments (urea, ammonium, or urea and ammonium). Already after 1 day of treatment, the availability of different N-forms induced specific transcriptomic and metabolomic responses. The combination of urea and ammonium induced a prompt assimilation of N, characterized by high levels of some amino acids in shoots. Moreover, ZmAMT1.1a, ZmGLN1;2, ZmGLN1;5, ZmGOT1, and ZmGOT3, as well transcripts involved in glycolysis-TCA cycle were induced in roots by urea and ammonium mixture. Depending on N-form, even changes in the composition of phytohormones were observed in maize. This study paves the way to formulate guidelines for the optimization of N fertilization to improve N-use efficiency in maize and therefore limit N-losses in the environment.


Ammonium Compounds , Zea mays , Ammonium Compounds/metabolism , Fertilizers , Gene Expression Regulation, Plant , Nitrogen/metabolism , Plant Roots/metabolism , Transcriptome , Urea , Zea mays/genetics , Zea mays/metabolism
12.
Front Plant Sci ; 12: 641678, 2021.
Article En | MEDLINE | ID: mdl-33643368

The specific variation in the functional ionome was studied in Brassica napus and Triticum aestivum plants subjected to micronutrient or beneficial mineral nutrient deprivation. Effects of these deprivations were compared to those of macronutrient deprivation. In order to identify early events, plants were harvested after 22 days, i.e., before any significant reduction in growth relative to control plants. Root uptake, tissue concentrations and relative root nutrient contents were analyzed revealing numerous interactions with respect to the 20 elements quantified. The assessment of the functional ionome under individual mineral nutrient deficiency allows the identification of a large number of interactions between elements, although it is not totally exhaustive, and gives access to specific ionomic signatures that discriminate among deficiencies in N, P, S, K, Ca, Mn, Fe, Zn, Na, Si, and Se in both species, plus Mg, Cl, Cu, and Mo in wheat. Ionome modifications and components of ionomic signatures are discussed in relation to well-known mechanisms that may explain crosstalks between mineral nutrients, such as between Na and K, V, Se, Mo and S or Fe, Zn and Cu. More surprisingly, when deprived of beneficial nutrients such as Na, Si, Co, or Se, the plant ionome was strongly modified while these beneficial nutrients contributed greatly to the leaf ionomic signature of most mineral deficiencies.

13.
Front Plant Sci ; 12: 641648, 2021.
Article En | MEDLINE | ID: mdl-33613614

The composition of the functional ionome was studied in Brassica napus and Triticum aestivum with respect to the response of 20 elements under macronutrient deprivation. Analysis of relative root contents showed that some nutrients, such as Fe, Ni, Cu, Na, V, and Co, were largely sequestered in roots. After 10 days of deprivation of each one of these 6 macronutrients, plant growth was similar to control plants, and this was probably the result of remobilization from roots (Mg and Ca) or old leaves (N, P, K, S). Some tissue concentrations and net nutrient uptakes into roots were either decreased or increased, revealing multiple interactions (93 in wheat, 66 in oilseed rape) that were common to both species (48) or were species specific. While some interactions have been previously described (increased uptake of Na under K deficiency; or increased uptake of Mo and Se under S deficiency), a number of new interactions were found and some key mechanisms underlying their action have been proposed from analysis of Arabidopsis mutants. For example, nitrate uptake seemed to be functionally linked to Na(influx, while the uptake of vanadium was probably mediated by sulfate transporters whose expression was stimulated during S deprivation.

14.
Sci Total Environ ; 756: 143726, 2021 Feb 20.
Article En | MEDLINE | ID: mdl-33307495

Production of struvite (MgNH4PO4·6H2O) from waste streams is increasingly implemented to recover phosphorus (P), which is listed as a critical raw material in the European Union (EU). To facilitate EU-wide trade of P-containing secondary raw materials such as struvite, the EU issued a revised fertilizer regulation in 2019. A comprehensive overview of the supply of struvite and its quality is presently missing. This study aimed: i) to determine the current EU struvite production volumes, ii) to evaluate all legislated physicochemical characteristics and pathogen content of European struvite against newly set regulatory limits, and iii) to compare not-regulated struvite characteristics. It is estimated that in 2020, between 990 and 1250 ton P are recovered as struvite in the EU. Struvite from 24 European production plants, accounting for 30% of the 80 struvite installations worldwide was sampled. Three samples failed the physicochemical legal limits; one had a P content of <7% and three exceeded the organic carbon content of 3% dry weight (DW). Mineralogical analysis revealed that six samples had a struvite content of 80-90% DW, and 13 samples a content of >90% DW. All samples showed a heavy metal content below the legal limits. Microbiological analyses indicated that struvite may exceed certain legal limits. Differences in morphology and particle size distribution were observed for struvite sourced from digestate (rod shaped; transparent; 82 mass% < 1 mm), dewatering liquor (spherical; opaque; 65 mass% 1-2 mm) and effluent from upflow anaerobic sludge blanket reactor processing potato wastewater (spherical; opaque; 51 mass% < 1 mm and 34 mass% > 2 mm). A uniform soil-plant P-availability pattern of 3.5-6.5 mg P/L soil/d over a 28 days sampling period was observed. No differences for plant biomass yield were observed. In conclusion, the results highlight the suitability of most struvite to enter the EU fertilizer market.


Phosphorus , Zea mays , Magnesium Compounds , Phosphates , Soil , Struvite
15.
Plants (Basel) ; 9(10)2020 Sep 24.
Article En | MEDLINE | ID: mdl-32987723

Potassium (K) is essential for the processes critical for plant performance, including photosynthesis, carbon assimilation, and response to stress. K also influences translocation of sugars in the phloem and regulates sucrose metabolism. Several plant species synthesize polyols and transport these sugar alcohols from source to sink tissues. Limited knowledge exists about the involvement of K in the above processes in polyol-translocating plants. We, therefore, studied K effects in Plantago major, a species that accumulates the polyol sorbitol to high concentrations. We grew P. major plants on soil substrate adjusted to low-, medium-, or high-potassium conditions. We found that biomass, seed yield, and leaf tissue K contents increased in a soil K-dependent manner. K gradually increased the photosynthetic efficiency and decreased the non-photochemical quenching. Concomitantly, sorbitol levels and sorbitol to sucrose ratio in leaves and phloem sap increased in a K-dependent manner. K supply also fostered plant cold acclimation. High soil K levels mitigated loss of water from leaves in the cold and supported cold-dependent sugar and sorbitol accumulation. We hypothesize that with increased K nutrition, P. major preferentially channels photosynthesis-derived electrons into sorbitol biosynthesis and that this increased sorbitol is supportive for sink development and as a protective solute, during abiotic stress.

16.
Int J Mol Sci ; 20(15)2019 Aug 02.
Article En | MEDLINE | ID: mdl-31382384

Numerous studies have demonstrated the potential of sugar beet to lose the final sugar yield under water limiting regime. Ample evidences have revealed the important role of mineral nutrition in increasing plant tolerance to abiotic stresses. Despite the vital role of calcium (Ca2+) in plant growth and development, as well as in stress responses as an intracellular messenger, its role in alleviating drought stress in sugar beet has been rarely addressed. Here, an attempt was undertaken to investigate whether, and to what extent, foliar application of Ca2+ confers drought stress tolerance in sugar beet plants exposed to drought stress. To achieve this goal, sugar beet plants, which were grown in a high throughput phenotyping platform, were sprayed with Ca2+ and submitted to drought stress. The results showed that foliar application of Ca2+ increased the level of magnesium and silicon in the leaves, promoted plant growth, height, and leaf coverage area as well as chlorophyll level. Ca2+, in turn, increased the carbohydrate levels in leaves under drought condition and regulated transcriptionally the genes involved in sucrose transport (BvSUC3 and BvTST3). Subsequently, Ca2+ enhanced the root biomass and simultaneously led to induction of root (BvSUC3 and BvTST1) sucrose transporters which eventually supported the loading of more sucrose into beetroot under drought stress. Metabolite analysis revealed that the beneficial effect of Ca2+ in tolerance to drought induced-oxidative stress is most likely mediated by higher glutathione pools, increased levels of free polyamine putrescine (Put), and lower levels of amino acid gamma-aminobutyric acid (GABA). Taken together, this work demonstrates that foliar application of Ca2+ is a promising fertilization strategy to improve mineral nutrition efficiency, sugar metabolism, redox state, and thus, drought stress tolerance.


Beta vulgaris/physiology , Calcium/metabolism , Plant Roots/physiology , Sucrose/metabolism , Acclimatization , Beta vulgaris/growth & development , Biomass , Droughts , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Roots/growth & development , Stress, Physiological
17.
J Control Release ; 294: 355-371, 2019 01 28.
Article En | MEDLINE | ID: mdl-30590097

The design and development of delivery controlled systems of molecules of interest has attracted great interest over the last years. pH variation, light irradiation, temperature increasing, variation of the redox potential and the application of a magnetic field are among the most widely used stimuli that can be used to induce the release of an active molecule in a medium. The dominance of pH and photo-controlled release is clearly highlighted by the numerous articles published in these fields as well as all the related applications. In the case of pH-controlled release, two main parameters govern the release: the solubility of the active molecule in the releasing medium and the stability of the carrier materials. In the photo-controlled release, the carrier needs to contain a photosensible functionality; this stimulus can be successfully applied in the medical field when red light, that is able to penetrate the human tissues, is used. A large panel of applications of controlled release can be identified in the pharmaceuticals, agriculture, cosmetics, chemistry and dyes industry fields. More recently, biological, enzymatic, and mechanical (ultrasounds, stretching, shear stress) stimuli have been developed for target applications, in particular for drugs and hormones release. Consequently, many types of materials (polymers, silica, oxides, MOF…) can be used as carrier in relation to their compatibility with the active molecule and the type of releasing medium. This review aims to gives a useful overview on the materials, applications and mechanisms implied in stimuli-controlled release.


Delayed-Action Preparations , Drug Delivery Systems , Hydrogen-Ion Concentration , Light , Oxidation-Reduction , Physical Stimulation , Temperature
...