Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Int J Cardiol ; 406: 132073, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38643804

BACKGROUND: Platelet P2Y12 antagonist ticagrelor reduces cardiovascular mortality after acute myocardial infarction (AMI) compared to clopidogrel, but the underlying mechanism is unknown. Because activated platelets release proatherogenic and proinflammatory microRNAs, including miR-125a, miR-125b and miR-223, we hypothesized that the expression of these miRNAs is lower on ticagrelor, compared to clopidogrel. OBJECTIVES: We compared miR-125a, miR-125b and miR-223 expression in plasma of patients after AMI treated with ticagrelor or clopidogrel. METHODS: After percutaneous coronary intervention on acetylsalicylic acid and clopidogrel, 60 patients with first AMI were randomized to switch to ticagrelor or to continue with clopidogrel. Plasma expression of miR-223, miR-125a-5p, miR-125b was measured using quantitative polymerase chain reaction at baseline and after 72 h and 6 months of treatment with ticagrelor or clopidogrel in patients and one in 30 healthy volunteers. Multiple electrode aggregometry using ADP test was used to determine platelet reactivity in response to P2Y12 inhibitors. RESULTS: Expression of miR-125b was higher in patients with AMI 72 h and 6 months, compared to healthy volunteers (p = 0.001), whereas expression of miR-125a-5p and miR-223 were comparable. In patients randomized to ticagrelor, expression of miR-125b decreased at 72 h (p = 0.007) and increased back to baseline at 6 months (p = 0.005). Expression of miR-125a-5p and miR-223 was not affected by the switch from clopidogrel to ticagrelor. CONCLUSIONS: Ticagrelor treatment leads to lower plasma expression of miR-125b after AMI, compared to clopidogrel. Higher expression of miR-125b might explain recurrent thrombotic events and worse clinical outcomes in patients treated with clopidogrel, compared to ticagrelor.


Clopidogrel , Down-Regulation , MicroRNAs , Ticagrelor , Humans , Clopidogrel/pharmacology , Clopidogrel/therapeutic use , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , MicroRNAs/blood , MicroRNAs/biosynthesis , MicroRNAs/genetics , Male , Female , Middle Aged , Aged , Down-Regulation/drug effects , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/blood , Myocardial Infarction/genetics , Percutaneous Coronary Intervention , Adenosine/analogs & derivatives , Adenosine/therapeutic use , Ticlopidine/analogs & derivatives , Ticlopidine/pharmacology , Ticlopidine/therapeutic use
3.
Zdr Varst ; 61(1): 24-31, 2022 Mar.
Article En | MEDLINE | ID: mdl-35111263

INTRODUCTION: Acute myocardial infarction (AMI) affects patients' health-related quality of life (HRQOL). AMI may decrease HRQOL, thus negatively affecting QOL. However, the improvements in interventional treatment and early rehabilitation after AMI may have a positive effect on HRQOL. AIM: We evaluated HRQOL in patients after the first AMI treated in a reference cardiology centre in Poland and assessed which clinical variables affect HRQOL after AMI. MATERIAL AND METHODS: We prospectively evaluated HRQOL in 60 consecutive patients suffering after their first AMI during the index hospitalisation and again after 6 months, using: (i) MacNew, (ii) World Health Organization Quality of Life (WHOQOL) BREF, and (iii) Short Form (SF) 36. RESULTS: As measured by the MacNew questionnaire, global, social, and physical functioning did not change (p≥0.063), whereas emotional functioning improved 6 months after AMI, compared to index hospitalisation (p=0.002). As measured by WHOQOL BREF, physical health, psychological health, and environmental functioning did not change (p≥0.321), whereas social relationships improved 6 months after AMI (p=0.042). As assessed by SF-36, the global HRQOL improved after AMI (p=0.044). Patients with improved HRQOL in SF-36 often had a higher baseline body mass index (p=0.046), dyslipidaemia (p=0.046), and lower left ventricle ejection fraction (LVEF; p=0.013). LVEF<50% was the only variable associated with improved HRQOL in multivariate analysis (OR 4.463, 95% CI 1.045 - 19.059, p=0.043). CONCLUSIONS: HRQOL increased 6 months after the first AMI, especially in terms of emotional functioning and social relationships. Patients with LVEF<50% were likely to have improved HRQOL.

4.
Biology (Basel) ; 11(2)2022 Jan 30.
Article En | MEDLINE | ID: mdl-35205091

Platelet-leucocyte aggregates (PLA) are a formation of leucocytes and platelets bound by specific receptors. They arise in the condition of sheer stress, thrombosis, immune reaction, vessel injury, and the activation of leukocytes or platelets. PLA participate in cardiovascular diseases (CVD). Increased levels of PLA were revealed in acute and chronic coronary syndromes, carotid stenosis cardiovascular risk factors. Due to accessible, available, replicable, quick, and low-cost quantifying using flow cytometry, PLA constitute an ideal biomarker for clinical practice. PLA are promising in early diagnosing and estimating prognosis in patients with acute or chronic coronary syndromes treated by percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). PLA were also a reliable marker of platelet activity for monitoring antiplatelet therapy. PLA consist also targets potential therapies in CVD. All of the above potential clinical applications require further studies to validate methods of assay and proof clinical benefits.

5.
J Clin Med ; 10(11)2021 May 26.
Article En | MEDLINE | ID: mdl-34073241

Acetylsalicylic acid (ASA) is one of the most frequently used medications worldwide. Yet, the main indications for ASA are the atherosclerosis-based cardiovascular diseases, including coronary artery disease (CAD). Despite the increasing number of percutaneous procedures to treat CAD, coronary artery bypass grafting (CABG) remains the treatment of choice in patients with multivessel CAD and intermediate or high anatomical lesion complexity. Taking into account that CABG is a potent activator of inflammation, ASA is an important part in the postoperative therapy, not only due to ASA antiplatelet action, but also as an anti-inflammatory agent. Additional benefits of ASA after CABG include anticancerogenic, hypotensive, antiproliferative, anti-osteoporotic, and neuroprotective effects, which are especially important in patients after CABG, prone to hypertension, graft occlusion, atherosclerosis progression, and cognitive impairment. Here, we discuss the pleiotropic effects of ASA after CABG and provide insights into the mechanisms underlying the benefits of treatment with ASA, beyond platelet inhibition. Since some of ASA pleiotropic effects seem to increase the risk of bleeding, it could be considered a starting point to investigate whether the increase of the intensity of the treatment with ASA after CABG is beneficial for the CABG group of patients.

6.
J Clin Med ; 10(5)2021 Mar 02.
Article En | MEDLINE | ID: mdl-33801460

(1) Background: Prostacyclin analogues (epoprostenol, treprostinil, and iloprost) induce vasodilation in pulmonary arterial hypertension (PAH) but also inhibit platelet function. (2) Objectives: We assessed platelet function in PAH patients treated with prostacyclin analogues and not receiving prostacyclin analogues. (3) Methods: Venous blood was collected from 42 patients treated with prostacyclin analogues (49.5 ± 15.9 years, 81% female) and 38 patients not receiving prostacyclin analogues (55.5 ± 15.6 years, 74% female). Platelet reactivity was analyzed by impedance aggregometry using arachidonic acid (AA; 0.5 mM), adenosine diphosphate (ADP; 6.5 µM), and thrombin receptor-activating peptide (TRAP; 32 µM) as agonists. In a subset of patients, concentrations of extracellular vesicles (EVs) from all platelets (CD61+), activated platelets (CD61+/CD62P+), leukocytes (CD45+), and endothelial cells (CD146+) were analyzed by flow cytometry. Platelet-rich thrombus formation was measured using a whole blood perfusion system. (4) Results: Compared to controls, PAH patients treated with prostacyclin analogues had lower platelet reactivity in response to AA and ADP (p = 0.01 for both), lower concentrations of platelet and leukocyte EVs (p ≤ 0.04), delayed thrombus formation (p ≤ 0.003), and decreased thrombus size (p = 0.008). Epoprostenol did not affect platelet reactivity but decreased the concentrations of platelet and leukocyte EVs (p ≤ 0.04). Treprostinil decreased platelet reactivity in response to AA and ADP (p ≤ 0.02) but had no effect on the concentrations of EVs. All prostacyclin analogues delayed thrombus formation and decreased thrombus size (p ≤ 0.04). (5) Conclusions: PAH patients treated with prostacyclin analogues had impaired platelet reactivity, EV release, and thrombus formation, compared to patients not receiving prostacyclin analogues.

7.
Biology (Basel) ; 10(2)2021 Jan 30.
Article En | MEDLINE | ID: mdl-33573196

Background, the mechanisms underlying left ventricular remodelling (LVR) after acute myocardial infarction (AMI) remain obscure. In the course of AMI, blood cells and endothelial cells release extracellular vesicles (EVs). We hypothesized that changes in EV concentrations after AMI may underlie LVR. Methods, plasma concentrations of EVs from endothelial cells (CD146+), erythrocytes (CD235a+), leukocytes (CD45+), platelets (CD61+), activated platelets (P-selectin+), and EVs exposing phosphatidylserine after AMI were determined by flow cytometry in 55 patients with the first AMI. LVR was defined as an increase in left ventricular end-diastolic volume by 20% at 6 months after AMI, compared to baseline. Results, baseline concentrations of EVs from endothelial cells, erythrocytes and platelets were lower in patients who developed LVR (p ≤ 0.02 for all). Concentrations of EVs from endothelial cells and erythrocytes were independent LVR predictors (OR 8.2, CI 1.3-54.2 and OR 17.8, CI 2.3-138.6, respectively) in multivariate analysis. Combining the three EV subtypes allowed to predict LVR with 83% sensitivity and 87% specificity. Conclusions, decreased plasma concentrations of EVs from endothelial cells, erythrocytes and platelets predict LVR after AMI. Since EV release EVs contributes to cellular homeostasis by waste removal, decreased concentrations of EVs may indicate dysfunctional cardiac homeostasis after AMI, thus promoting LVR.

8.
Platelets ; 31(1): 26-32, 2020.
Article En | MEDLINE | ID: mdl-30585111

Activated platelets contribute to thrombosis and inflammation by the release of extracellular vesicles (EVs) exposing P-selectin, phosphatidylserine (PS) and fibrinogen. P2Y12 receptor antagonists are routinely administered to inhibit platelet activation in patients after acute myocardial infarction (AMI), being a combined antithrombotic and anti-inflammatory therapy. The more potent P2Y12 antagonist ticagrelor improves cardiovascular outcome in patients after AMI compared to the less potent clopidogrel, suggesting that greater inhibition of platelet aggregation is associated with better prognosis. The effect of ticagrelor and clopidogrel on the release of EVs from platelets and other P2Y12-exposing cells is unknown. This study compares the effects of ticagrelor and clopidogrel on (1) the concentrations of EVs from activated platelets (primary end point), (2) the concentrations of EVs exposing fibrinogen, exposing PS, from leukocytes and from endothelial cells (secondary end points) and (3) the procoagulant activity of plasma EVs (tertiary end points) in 60 consecutive AMI patients. After the percutaneous coronary intervention, patients will be randomized to antiplatelet therapy with ticagrelor (study group) or clopidogrel (control group). Blood will be collected from patients at randomization, 48 hours after randomization and 6 months following the index hospitalization. In addition, 30 age- and gender-matched healthy volunteers will be enrolled in the study to investigate the physiological concentrations and procoagulant activity of EVs using recently standardized protocols and EV-dedicated flow cytometry. Concentrations of EVs will be determined by flow cytometry. Procoagulant activity of EVs will be determined by fibrin generation test. The compliance and response to antiplatelet therapy will be assessed by impedance aggregometry. We expect that plasma from patients treated with ticagrelor (1) contains lower concentrations of EVs from activated platelets, exposing fibrinogen, exposing PS, from leukocytes and from endothelial cells and (2) has lower procoagulant activity, when compared to patients treated with clopidogrel. Antiplatelet therapy effect on EVs may identify a new mechanism of action of ticagrelor, as well as create a basis for future studies to investigate whether lower EV concentrations are associated with improved clinical outcomes in patients treated with P2Y12 antagonists.


Clinical Protocols , Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , Myocardial Infarction/complications , Myocardial Infarction/metabolism , Platelet Aggregation Inhibitors/administration & dosage , Thrombosis/etiology , Thrombosis/prevention & control , Biomarkers , Blood Platelets/drug effects , Blood Platelets/metabolism , Female , Humans , Male , Myocardial Infarction/therapy , Percutaneous Coronary Intervention , Platelet Activation/drug effects , Purinergic P2Y Receptor Antagonists/administration & dosage
9.
J Thromb Haemost ; 18(3): 609-623, 2020 03.
Article En | MEDLINE | ID: mdl-31833175

BACKGROUND: Platelet P2Y12 antagonist ticagrelor reduces mortality after acute myocardial infarction (AMI) compared to clopidogrel, but the underlying mechanism is unknown. Because activated platelets, leukocytes, and endothelial cells release proinflammatory and prothrombotic extracellular vesicles (EVs), we hypothesized that the release of EVs is more efficiently inhibited by ticagrelor compared to clopidogrel. OBJECTIVES: We compared EV concentrations and EV procoagulant activity in plasma of patients after AMI treated with ticagrelor or clopidogrel. METHODS: After percutaneous coronary intervention, 60 patients with first AMI were randomized to ticagrelor or clopidogrel. Flow cytometry was used to determine concentrations of EVs from activated platelets (CD61+ , CD62p+ ), fibrinogen+ , phosphatidylserine (PS+ ), leukocytes (CD45+ ), endothelial cells (CD31+ , 146+ ), and erythrocytes (CD235a+ ) in plasma at randomization, after 72 hours and 6 months of treatment. A fibrin generation test was used to determine EV procoagulant activity. RESULTS: Concentrations of platelet, fibrinogen+ , PS+ , leukocyte, and erythrocyte EVs increased 6 months after AMI compared to the acute phase of AMI (P ≤ .03). Concentrations of platelet EVs were lower on ticagrelor compared to clopidogrel after 6 months (P = .03). Concentrations of fibrinogen+ , PS+ , and leukocyte EVs were lower on ticagrelor compared to clopidogrel both after 72 hours and 6 months (P ≤ .03). Concentrations of endothelial EVs and EV procoagulant activity did not differ between patient groups and over time (P ≥ .17). CONCLUSIONS: Ticagrelor attenuates the increase of EV concentrations in plasma after acute myocardial infarction compared to clopidogrel. The ongoing release of EVs despite antiplatelet therapy might explain recurrent thrombotic events after AMI and worse clinical outcomes on clopidogrel compared to ticagrelor.


Extracellular Vesicles , Myocardial Infarction , Percutaneous Coronary Intervention , Clopidogrel , Endothelial Cells , Humans , Myocardial Infarction/drug therapy , Platelet Aggregation Inhibitors/therapeutic use , Ticagrelor , Treatment Outcome
10.
Cardiol J ; 26(6): 782-789, 2019.
Article En | MEDLINE | ID: mdl-29671861

BACKGROUND: Activated platelets release platelet extracellular vesicles (PEVs). Adenosine diphosphate (ADP) receptors P2Y1 and P2Y12 both play a role in platelet activation, The present hypothesis herein is that the inhibition of these receptors may affect the release of PEVs. METHODS: Platelet-rich plasma from 10 healthy subjects was incubated with saline, P2Y1 antagonist MRS2179 (100 µM), P2Y12 antagonist ticagrelor (1 µM), and a combination of both antagonists. Platelets were activated by ADP (10 µM) under stirring conditions at 37°C. Platelet reactivity was assessed by impedance aggregometry. Concentrations of PEVs- (positive for CD61 but negative for P-selectin and phosphatidylserine) and PEVs+ (positive for all) were determined by a state-of-the-art flow cytometer. Procoagulant activity of PEVs was measured by a fibrin generation test. RESULTS: ADP-induced aggregation (57 ± 13 area under curve {AUC] units) was inhibited 73% by the P2Y1 antagonist, 86% by the P2Y12 antagonist, and 95% when combined (p < 0.001 for all). The release of PEVs- (2.9 E ± 0.8 × 108/mL) was inhibited 48% in the presence of both antagonists (p = 0.015), whereas antagonists alone were ineffective. The release of PEVs+ (2.4 ± 1.6 × 107/mL) was unaffected by the P2Y1 antagonist, but was 62% inhibited by the P2Y12 antagonist (p = 0.035), and 72% by both antagonists (p = 0.022). PEVs promoted coagulation in presence of tissue factor. CONCLUSIONS: Inhibition of P2Y1 and P2Y12 receptors reduces platelet aggregation and affects the release of distinct subpopulations of PEVs. Ticagrelor decreases the release of procoagulant PEVs from activated platelets, which may contribute to the observed clinical benefits in patients treated with ticagrelor.


Blood Coagulation/drug effects , Blood Platelets/drug effects , Extracellular Vesicles/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, Purinergic P2Y12/drug effects , Ticagrelor/pharmacology , Adenosine Diphosphate/analogs & derivatives , Adenosine Diphosphate/pharmacology , Blood Platelets/metabolism , Extracellular Vesicles/metabolism , Healthy Volunteers , Humans , Receptors, Purinergic P2Y1/blood , Receptors, Purinergic P2Y1/drug effects , Receptors, Purinergic P2Y12/blood , Signal Transduction
...