Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15041, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951552

RESUMEN

The Indian economy is greatly influenced by the Banana Industry, necessitating advancements in agricultural farming. Recent research emphasizes the imperative nature of addressing diseases that impact Banana Plants, with a particular focus on early detection to safeguard production. The urgency of early identification is underscored by the fact that diseases predominantly affect banana plant leaves. Automated systems that integrate machine learning and deep learning algorithms have proven to be effective in predicting diseases. This manuscript examines the prediction and detection of diseases in banana leaves, exploring various diseases, machine learning algorithms, and methodologies. The study makes a contribution by proposing two approaches for improved performance and suggesting future research directions. In summary, the objective is to advance understanding and stimulate progress in the prediction and detection of diseases in banana leaves. The need for enhanced disease identification processes is highlighted by the results of the survey. Existing models face a challenge due to their lack of rotation and scale invariance. While algorithms such as random forest and decision trees are less affected, initially convolutional neural networks (CNNs) is considered for disease prediction. Though the Convolutional Neural Network models demonstrated impressive accuracy in many research but it lacks in invariance to scale and rotation. Moreover, it is observed that due its inherent design it cannot be combined with feature extraction methods to identify the banana leaf diseases. Due to this reason two alternative models that combine ANN with scale-invariant Feature transform (SIFT) model or histogram of oriented gradients (HOG) combined with local binary patterns (LBP) model are suggested. The first model ANN with SIFT identify the disease by using the activation functions to process the features extracted by the SIFT by distinguishing the complex patterns. The second integrate the combined features of HOG and LBP to identify the disease thus by representing the local pattern and gradients in an image. This paves a way for the ANN to learn and identify the banana leaf disease. Moving forward, exploring datasets in video formats for disease detection in banana leaves through tailored machine learning algorithms presents a promising avenue for research.


Asunto(s)
Aprendizaje Automático , Musa , Redes Neurales de la Computación , Enfermedades de las Plantas , Hojas de la Planta , Algoritmos
2.
Biomed Phys Eng Express ; 10(4)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38848695

RESUMEN

Recent advancements in computational intelligence, deep learning, and computer-aided detection have had a significant impact on the field of medical imaging. The task of image segmentation, which involves accurately interpreting and identifying the content of an image, has garnered much attention. The main objective of this task is to separate objects from the background, thereby simplifying and enhancing the significance of the image. However, existing methods for image segmentation have their limitations when applied to certain types of images. This survey paper aims to highlight the importance of image segmentation techniques by providing a thorough examination of their advantages and disadvantages. The accurate detection of cancer regions in medical images is crucial for ensuring effective treatment. In this study, we have also extensive analysis of Computer-Aided Diagnosis (CAD) systems for cancer identification, with a focus on recent research advancements. The paper critically assesses various techniques for cancer detection and compares their effectiveness. Convolutional neural networks (CNNs) have attracted particular interest due to their ability to segment and classify medical images in large datasets, thanks to their capacity for self- learning and decision-making.


Asunto(s)
Algoritmos , Inteligencia Artificial , Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador , Neoplasias , Redes Neurales de la Computación , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/diagnóstico , Procesamiento de Imagen Asistido por Computador/métodos , Diagnóstico por Imagen/métodos , Diagnóstico por Computador/métodos , Aprendizaje Profundo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA