Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Microorganisms ; 8(12)2020 Dec 19.
Article En | MEDLINE | ID: mdl-33352781

Tomato bushy stunt virus (TBSV) and Tomato mosaic virus (ToMV) are important economic pathogens in tomato fields. Rhizoglomus irregulare is a species of arbuscular mycorrhizal (AM) fungus that provides nutrients to host plants. To understand the effect of R. irregulare on the infection by TBSV/ToMV in tomato plants, in a completely randomized design, five treatments, including uninfected control plants without AM fungi (C), uninfected control plants with AM fungi (M) TBSV/ToMV-infected plants without AM fungi (V), TBSV/ToMV-infected plants before mycorrhiza (VM) inoculation, and inoculated plants with mycorrhiza before TBSV/ToMV infection (MV), were studied. Factors including viral RNA accumulation and expression of Pathogenesis Related proteins (PR) coding genes including PR1, PR2, and PR3 in the young leaves were measured. For TBSV, a lower level of virus accumulation and a higher expression of PR genes in MV plants were observed compared to V and VM plants. In contrast, for ToMV, a higher level of virus accumulation and a lower expression of PR genes in MV plants were observed as compared to V and VM plants. These results indicated that mycorrhizal symbiosis reduces or increases the viral accumulation possibly via the regulation of PR genes in tomato plants.

2.
J Microbiol Methods ; 167: 105727, 2019 12.
Article En | MEDLINE | ID: mdl-31629912

Estimating the abundance of arbuscular mycorrhizal fungi relies entirely on indirect methods, meaning all measures are associated with some variability. The most common methods use microscopic estimates of the relative proportion of root length colonized by fungal structures. These methods typically examine root subsamples. While such methods are inexpensive and relatively simple, significant variation within single root system means there is opportunity for sampling bias. We evaluated the two most common methods of percent root length colonization for AM fungi both as a subsample and for the entire root system of flax plants. We compared these measures to a novel technique that returns projected fungal surface area (fungal coverage), by using microphotography and imaging analysis. Both microscopic methods overestimated the colonization intensity compared to image analysis. Among the microscopic methods, the method which incorporated colonization intensity (Trouvelot) was significantly more similar to imaging method results, than the method that is based on the presence/absence of the fungus (McGonigle).


Image Processing, Computer-Assisted/methods , Microscopy/methods , Mycorrhizae/physiology , Plant Roots/microbiology , Flax/microbiology , Photography/methods , Symbiosis
...