Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Lab Chip ; 24(1): 137-147, 2023 12 20.
Article En | MEDLINE | ID: mdl-38054213

Synthetic biology harnesses the power of natural microbes by re-engineering metabolic pathways to manufacture desired compounds. Droplet technology has emerged as a high-throughput tool to screen single cells for synthetic biology, while the challenges in sensitive flexible single-cell secretion assay for bioproduction of high-value chemicals remained. Here, a novel droplet modifiable graphene oxide (GO) aptasensor was developed, enabling sensitive flexible detection of different target compounds secreted from single cells. Fluorophore-labeled aptamers were stably anchored on GO through π-π stacking interactions to minimize the non-specific interactions for low-background detection of target compounds with high signal-to-noise ratios. The assay's versatility was exhibited by adapting aptamer sequences to measure metabolic secretions like ATP and naringenin. To show the case, engineered E. coli were constructed for the bioproduction of naringenin. The high signal-to-noise ratio assay (∼2.72) was approached to precisely measure the naringenins secreted from single E. coli in the droplets. Consequently, secretory cells (Gib) were clearly distinguished from wild-type (WT) cells, with a low overlap in cell populations (∼0%) for bioproduction.


Aptamers, Nucleotide , Biosensing Techniques , Graphite , Oxides/chemistry , Synthetic Biology , Escherichia coli/metabolism , Aptamers, Nucleotide/chemistry , Graphite/chemistry , Limit of Detection
2.
Nat Commun ; 14(1): 3921, 2023 07 03.
Article En | MEDLINE | ID: mdl-37400476

The increasing integration between biological and digital interfaces has led to heightened interest in utilizing biological materials to store digital data, with the most promising one involving the storage of data within defined sequences of DNA that are created by de novo DNA synthesis. However, there is a lack of methods that can obviate the need for de novo DNA synthesis, which tends to be costly and inefficient. Here, in this work, we detail a method of capturing 2-dimensional light patterns into DNA, by utilizing optogenetic circuits to record light exposure into DNA, encoding spatial locations with barcoding, and retrieving stored images via high-throughput next-generation sequencing. We demonstrate the encoding of multiple images into DNA, totaling 1152 bits, selective image retrieval, as well as robustness to drying, heat and UV. We also demonstrate successful multiplexing using multiple wavelengths of light, capturing 2 different images simultaneously using red and blue light. This work thus establishes a 'living digital camera', paving the way towards integrating biological systems with digital devices.


DNA Replication , DNA , DNA/genetics , Light , High-Throughput Nucleotide Sequencing
3.
Methods Mol Biol ; 2553: 173-187, 2023.
Article En | MEDLINE | ID: mdl-36227544

To enable a more rational optimization approach to drive the transition from lab-scale to large industrial bioprocesses, a systematic framework coupling both experimental design and integrated modeling was established to guide the workflow executed from small flask scale to bioreactor scale. The integrated model relies on the coupling of biotic cell factory kinetics to the abiotic bioreactor hydrodynamics to offer a rational means for an in-depth understanding of two-way spatiotemporal interactions between cell behaviors and environmental variations. This model could serve as a promising tool to inform experimental work with reduced efforts via full-factorial in silico predictions. This chapter thus describes the general workflow involved in designing and applying this modeling approach to drive the experimental design towards rational bioprocess optimization.


Bioreactors , Research Design , Hydrodynamics
4.
ACS Synth Biol ; 11(8): 2901-2906, 2022 08 19.
Article En | MEDLINE | ID: mdl-35866653

Modeling in synthetic biology constitutes a powerful means in our continuous search for improved performance with a rational Design-Build-Test-Learn approach. Particularly, kinetic models unravel system dynamics and enable system analysis for guiding experimental design. However, a systematic yet modular pipeline that allows one to identify the appropriate model and guide the experimental designs while tracing the entire model development and analysis is still lacking. Here, we develop BMSS2, a unified tool that streamlines and automates model selection by combining information criterion ranking with upstream and parallel analysis algorithms. These include Bayesian parameter inference, a priori and a posteriori identifiability analysis, and global sensitivity analysis. In addition, the database-driven design supports interactive model storage/retrieval to encourage reusability and facilitate automated model selection. This allows ease of model manipulation and deposition for the selection and analysis, thus enabling better utilization of models in guiding experimental design.


Algorithms , Synthetic Biology , Bayes Theorem , Databases, Factual , Kinetics , Models, Biological
5.
Small ; 18(22): e2107659, 2022 06.
Article En | MEDLINE | ID: mdl-35521934

The recent legalization of cannabidiol (CBD) to treat neurological conditions such as epilepsy has sparked rising interest across global pharmaceuticals and synthetic biology industries to engineer microbes for sustainable synthetic production of medicinal CBD. Since the process involves screening large amounts of samples, the main challenge is often associated with the conventional screening platform that is time consuming, and laborious with high operating costs. Here, a portable, high-throughput Aptamer-based BioSenSing System (ABS3 ) is introduced for label-free, low-cost, fully automated, and highly accurate CBD concentrations' classification in a complex biological environment. The ABS3 comprises an array of interdigitated microelectrode sensors, each functionalized with different engineered aptamers. To further empower the functionality of the ABS3 , unique electrochemical features from each sensor are synergized using physics-guided multidimensional analysis. The capabilities of this ABS3 are demonstrated by achieving excellent CBD concentrations' classification with a high prediction accuracy of 99.98% and a fast testing time of 22 µs per testing sample using the optimized random forest (RF) model. It is foreseen that this approach will be the key to the realistic transformation from fundamental research to system miniaturization for diagnostics of disease biomarkers and drug development in the field of chemical/bioanalytics.


Cannabidiol , Cannabidiol/therapeutic use , High-Throughput Screening Assays , Machine Learning , Nucleotides , Physics
6.
Sci Rep ; 12(1): 4004, 2022 03 07.
Article En | MEDLINE | ID: mdl-35256704

DNA assembly is a vital process in biotechnology and synthetic biology research, during which DNA plasmids are designed and constructed using bioparts to engineer microorganisms for a wide range of applications. Here, we present an enzymatic homology-based DNA assembly method, SENAX (Stellar ExoNuclease Assembly miX), that can efficiently assemble multiple DNA fragments at ambient temperature from 30 to 37 °C and requires homology overlap as short as 12-18 base pairs. SENAX relies only on a 3'-5' exonuclease, XthA (ExoIII), followed by Escherichia coli transformation, enabling easy scaling up and optimization. Importantly, SENAX can efficiently assemble short fragments down to 70 bp into a vector, overcoming a key shortcoming of existing commonly used homology-based technologies. To the best of our knowledge, this has not been reported elsewhere using homology-based methods. This advantage leads us to develop a framework to perform DNA assembly in a more modular manner using reusable promoter-RBS short fragments, simplifying the construction process and reducing the cost of DNA synthesis. This approach enables commonly used short bioparts (e.g., promoter, RBS, insulator, terminator) to be reused by the direct assembly of these parts into intermediate constructs. SENAX represents a novel accurate, highly efficient, and automation-friendly DNA assembly method.


DNA , Synthetic Biology , Cloning, Molecular , DNA/genetics , Escherichia coli/genetics , Exonucleases/genetics , Plasmids/genetics
7.
Biotechnol Adv ; 55: 107907, 2022.
Article En | MEDLINE | ID: mdl-35041863

Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.


Synthetic Biology , Thermosensing , Biotechnology , Temperature
8.
ACS Synth Biol ; 11(2): 921-937, 2022 02 18.
Article En | MEDLINE | ID: mdl-35089710

Temperature is a physical cue that is easy to apply, allowing cellular behaviors to be controlled in a contactless and dynamic manner via heat-inducible/repressible systems. However, existing heat-repressible systems are limited in number, rely on thermal sensitive mRNA or transcription factors that function at low temperatures, lack tunability, suffer delays, and are overly complex. To provide an alternative mode of thermal regulation, we developed a library of compact, reversible, and tunable thermal-repressible split-T7 RNA polymerase systems (Thermal-T7RNAPs), which fused temperature-sensitive domains of Tlpa protein with split-T7RNAP to enable direct thermal control of the T7RNAP activity between 30 and 42 °C. We generated a large mutant library with varying thermal performances via an automated screening framework to extend temperature tunability. Lastly, using the mutants, novel thermal logic circuitry was implemented to regulate cell growth and achieve active thermal control of the cell proportions within co-cultures. Overall, this technology expanded avenues for thermal control in biotechnology applications.


DNA-Directed RNA Polymerases , Viral Proteins , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation , Gene Library , Transcription, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism
9.
Trends Biotechnol ; 39(10): 990-1003, 2021 10.
Article En | MEDLINE | ID: mdl-33455842

The field of storing information in DNA has expanded exponentially. Most common modalities involve encoding information from bits into synthesized nucleotides, storage in liquid or dry media, and decoding via sequencing. However, limitations to this paradigm include the cost of DNA synthesis and sequencing, along with low throughput. Further unresolved questions include the appropriate media of storage and the scalability of such approaches for commercial viability. In this review, we examine various storage modalities involving the use of DNA from a systems-level perspective. We compare novel methods that draw inspiration from molecular biology techniques that have been devised to overcome the difficulties posed by standard workflows and conceptualize potential applications that can arise from these advances.


DNA , Information Storage and Retrieval , DNA/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
10.
Biotechnol Bioeng ; 118(1): 305-318, 2021 01.
Article En | MEDLINE | ID: mdl-32946111

Due to sustainability concerns, bio-based production capitalizing on microbes as cell factories is in demand to synthesize valuable products. Nevertheless, the nonhomogenous variations of the extracellular environment in bioprocesses often challenge the biomass growth and the bioproduction yield. To enable a more rational bioprocess optimization, we have established a model-driven approach that systematically integrates experiments with modeling, executed from flask to bioreactor scale, and using ferulic acid to vanillin bioconversion as a case study. The impacts of mass transfer and aeration on the biomass growth and bioproduction performances were examined using minimal small-scale experiments. An integrated model coupling the cell factory kinetics with the three-dimensional computational hydrodynamics of bioreactor was developed to better capture the spatiotemporal distributions of bioproduction. Full-factorial predictions were then performed to identify the desired operating conditions. A bioconversion yield of 94% was achieved, which is one of the highest for recombinant Escherichia coli using ferulic acid as the precursor.


Benzaldehydes/metabolism , Biomass , Bioreactors , Coumaric Acids/metabolism , Escherichia coli , Escherichia coli/genetics , Escherichia coli/growth & development
11.
Front Bioeng Biotechnol ; 9: 804563, 2021.
Article En | MEDLINE | ID: mdl-35071213

Owing to its ubiquity and easy availability in nature, light has been widely employed to control complex cellular behaviors. Light-sensitive proteins are the foundation to such diverse and multilevel adaptive regulations in a large range of organisms. Due to their remarkable properties and potential applications in engineered systems, exploration and engineering of natural light-sensitive proteins have significantly contributed to expand optogenetic toolboxes with tailor-made performances in synthetic genetic circuits. Progressively, more complex systems have been designed in which multiple photoreceptors, each sensing its dedicated wavelength, are combined to simultaneously coordinate cellular responses in a single cell. In this review, we highlight recent works and challenges on multiplexed optogenetic circuits in natural and engineered systems for a dynamic regulation breakthrough in biotechnological applications.

12.
Adv Genet (Hoboken) ; 2(1): e10038, 2021 Mar.
Article En | MEDLINE | ID: mdl-36618442

Synthetic biology research and technology translation has garnered increasing interest from the governments and private investors in Asia, where the technology has great potential in driving a sustainable bio-based economy. This Perspective reviews the latest developments in the key enabling technologies of synthetic biology and its application in bio-manufacturing, medicine, food and agriculture in Asia. Asia-centric strengths in synthetic biology to grow the bio-based economy, such as advances in genome editing and the presence of biofoundries combined with the availability of natural resources and vast markets, are also highlighted. The potential barriers to the sustainable development of the field, including inadequate infrastructure and policies, with suggestions to overcome these by building public-private partnerships, more effective multi-lateral collaborations and well-developed governance framework, are presented. Finally, the roles of technology, education and regulation in mitigating potential biosecurity risks are examined. Through these discussions, stakeholders from different groups, including academia, industry and government, are expectantly better positioned to contribute towards the establishment of innovation and bio-economy hubs in Asia.

13.
Eng Biol ; 5(1): 1, 2021 Mar.
Article En | MEDLINE | ID: mdl-36968649
14.
ACS Synth Biol ; 9(9): 2410-2417, 2020 09 18.
Article En | MEDLINE | ID: mdl-32786354

Synthetic biology aims to develop novel biological systems and increase their reproducibility using engineering principles such as standardization and modularization. It is important that these systems can be represented and shared in a standard way to ensure they can be easily understood, reproduced, and utilized by other researchers. The Synthetic Biology Open Language (SBOL) is a data standard for sharing biological designs and information about their implementation and characterization. Previously, this standard has only been used to represent designs in systems where the same design is implemented in every cell; however, there is also much interest in multicellular systems, in which designs involve a mixture of different types of cells with differing genotype and phenotype. Here, we show how the SBOL standard can be used to represent multicellular systems, and, hence, how researchers can better share designs with the community and reliably document intended system functionality.


Software , Synthetic Biology/methods , Animals , Biosensing Techniques , CHO Cells , Cricetinae , Cricetulus , Plasmids/genetics , Plasmids/metabolism
15.
J Mol Biol ; 432(10): 3137-3148, 2020 05 01.
Article En | MEDLINE | ID: mdl-32247761

Bacterial motility is related to many cellular activities, such as cell migration, aggregation, and biofilm formations. The ability to control motility and direct the bacteria to certain location could be used to guide the bacteria in applications such as seeking for and killing pathogen, forming various population-level patterns, and delivering of drugs and vaccines. Currently, bacteria motility is mainly controlled by chemotaxis (prescribed chemical stimuli), which needs physical contact with the chemical inducer. This lacks the flexibility for pattern formation as it has limited spatial control. To overcome the limitations, we developed blue light-regulated synthetic genetic circuit to control bacterial directional motility, by taking the advantage that light stimulus can be delivered to cells in different patterns with precise spatial control. The circuit developed enables programmed Escherichia coli cells to increase directional motility and move away from the blue light, i.e., that negative phototaxis is utilized. This further allows the control of the cells to form aggregation with different patterns. Further, we showed that the circuit can be used to separate two different strains. The demonstrated ability of blue light-controllable gene circuits to regulate a CheZ expression could give researchers more means to control bacterial motility and pattern formation.


Escherichia coli/physiology , Light/adverse effects , Methyl-Accepting Chemotaxis Proteins/genetics , Bacterial Physiological Phenomena/drug effects , Chemotaxis/drug effects , Gene Expression Regulation, Bacterial/drug effects , Promoter Regions, Genetic , Synthetic Biology
16.
J Biol Eng ; 13: 89, 2019.
Article En | MEDLINE | ID: mdl-31832092

BACKGROUND: With the inherent high density and durable preservation, DNA has been recently recognized as a distinguished medium to store enormous data over millennia. To overcome the limitations existing in a recently reported high-capacity DNA data storage while achieving a competitive information capacity, we are inspired to explore a new coding system that facilitates the practical implementation of DNA data storage with high capacity. RESULT: In this work, we devised and implemented a DNA data storage scheme with variable-length oligonucleotides (oligos), where a hybrid DNA mapping scheme that converts digital data to DNA records is introduced. The encoded DNA oligos stores 1.98 bits per nucleotide (bits/nt) on average (approaching the upper bound of 2 bits/nt), while conforming to the biochemical constraints. Beyond that, an oligo-level repeat-accumulate coding scheme is employed for addressing data loss and corruption in the biochemical processes. With a wet-lab experiment, an error-free retrieval of 379.1 KB data with a minimum coverage of 10x is achieved, validating the error resilience of the proposed coding scheme. Along with that, the theoretical analysis shows that the proposed scheme exhibits a net information density (user bits per nucleotide) of 1.67 bits/nt while achieving 91% of the information capacity. CONCLUSION: To advance towards practical implementations of DNA storage, we proposed and tested a DNA data storage system enabling high potential mapping (bits to nucleotide conversion) scheme and low redundancy but highly efficient error correction code design. The advancement reported would move us closer to achieving a practical high-capacity DNA data storage system.

17.
Nat Commun ; 10(1): 3132, 2019 Jul 11.
Article En | MEDLINE | ID: mdl-31296848

The original version of this Comment contained errors in the legend of Figure 2, in which the locations of the fifteenth and sixteenth GBA members were incorrectly given as '(15) Australian Genome Foundry, Macquarie University; (16) Australian Foundry for Advanced Biomanufacturing, University of Queensland.'. The correct version replaces this with '(15) Australian Foundry for Advanced Biomanufacturing (AusFAB), University of Queensland and (16) Australian Genome Foundry, Macquarie University'. This has been corrected in both the PDF and HTML versions of the Comment.

18.
ACS Synth Biol ; 8(7): 1484-1497, 2019 07 19.
Article En | MEDLINE | ID: mdl-31035759

Constructing a complex functional gene circuit composed of different modular biological parts to achieve the desired performance remains challenging without a proper understanding of how the individual module behaves. To address this, mathematical models serve as an important tool toward better interpretation by quantifying the performance of the overall gene circuit, providing insights, and guiding the experimental designs. As different gene circuits might require exclusively different mathematical representations in the form of ordinary differential equations to capture their transient dynamic behaviors, a recurring challenge in model development is the selection of the appropriate model. Here, we developed an automated biomodel selection system (BMSS) which includes a library of pre-established models with intuitive or unintuitive features derived from a vast array of expression profiles. Selection of models is built upon the Akaike information criteria (AIC). We tested the automated platform using characterization data of routinely used inducible systems, constitutive expression systems, and several different logic gate systems (NOT, AND, and OR gates). The BMSS achieved a good agreement for all the different characterization data sets and managed to select the most appropriate model accordingly. To enable exchange and reproducibility of gene circuit design models, the BMSS platform also generates Synthetic Biology Open Language (SBOL)-compliant gene circuit diagrams and Systems Biology Markup Language (SBML) output files. All aspects of the algorithm were programmed in a modular manner to ease the efforts on model extensions or customizations by users. Taken together, the BMSS which is implemented in Python supports users in deriving the best mathematical model candidate in a fast, efficient, and automated way using part/circuit characterization data.


Gene Regulatory Networks/genetics , Synthetic Biology/methods , Algorithms , Gene Library , Humans , Models, Biological , Models, Theoretical , Programming Languages , Reproducibility of Results , Software , Systems Biology/methods
20.
ACS Synth Biol ; 7(11): 2627-2639, 2018 11 16.
Article En | MEDLINE | ID: mdl-30359530

To program cells in a dynamic manner, synthetic biologists require precise control over the threshold levels and timing of gene expression. However, in practice, modulating gene expression is widely carried out using prototypical ligand-inducible promoters, which have limited tunability and spatiotemporal resolution. Here, we built two dual-input hybrid promoters, each retaining the function of the ligand-inducible promoter while being enhanced with a blue-light-switchable tuning knob. Using the new promoters, we show that both ligand and light inputs can be synchronously modulated to achieve desired amplitude or independently regulated to generate desired frequency at a specific amplitude. We exploit the versatile programmability and orthogonality of the two promoters to build the first reprogrammable logic gene circuit capable of reconfiguring into logic OR and N-IMPLY logic on the fly in both space and time without the need to modify the circuit. Overall, we demonstrate concentration- and time-based combinatorial regulation in live bacterial cells with potential applications in biotechnology and synthetic biology.


Escherichia coli/genetics , Gene Expression Regulation, Bacterial/radiation effects , Light , Promoter Regions, Genetic/genetics , Escherichia coli/metabolism , Genes, Bacterial , Ligands , Models, Theoretical , Plasmids/genetics , Plasmids/metabolism
...