Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACS Au ; 1(2): 187-200, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-34467283

RESUMEN

Ultrasmall gold nanoparticles (NPs) stabilized in networks by polymantane ligands (diamondoids) were successfully used as precatalysts for highly selective heterogeneous gold-catalyzed dimethyl allyl(propargyl)malonate cyclization to 5-membered conjugated diene. Such reaction usually suffers from selectivity issues with homogeneous catalysts. This control over selectivity further opened the way to one-pot cascade reaction, as illustrated by the 1,6-enyne cycloisomerization-Diels-Alder reaction of dimethyl allyl propargyl malonate with maleic anhydride. The ability to assemble nanoparticles with controllable sizes and shapes within networks concerns research in sensors, medical diagnostics, information storage, and catalysis applications. Herein, the control of the synthesis of sub-2-nm gold NPs is achieved by the formation of dense networks, which are assembled in a single step reaction by employing ditopic polymantanethiols. By using 1,1'-bisadamantane-3,3'-dithiol (BAd-SH) and diamantane-4,9-dithiol (DAd-SH), serving both as bulky surface stabilizers and short-sized linkers, we provide a simple method to form uniformly small gold NPs (1.3 ± 0.2 nm to 1.6 ± 0.3 nm) embedded in rigid frameworks. These NP arrays are organized alongside short interparticular distances ranging from 1.9 to 2.7 nm. The analysis of gold NP surfaces and their modification were achieved in joint experimental and theoretical studies, using notably XPS, NMR, and DFT modeling. Our experimental studies and DFT analyses highlighted the necessary oxidative surface reorganization of individual nanoparticles for an effective enyne cycloisomerization. The modifications at bulky stabilizing ligands allow surface steric decongestion for the alkyne moiety activation but also result in network alteration by overoxidation of sulfurs. Thus, sub-2-nm nanoparticles originating from networks building create convenient conditions for generating reactive Au(I) surface single-sites-in the absence of silver additives-useful for heterogeneous gold-catalyzed enyne cyclization. These nanocatalysts, which as such ease organic products separation, also provide a convenient access for building further polycyclic complexity, owing to their high reactivity and selectivity.

2.
Small ; 17(44): e2102759, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34411437

RESUMEN

Dihydrogen is one of the sustainable energy vectors envisioned for the future. However, the rapidly reversible and secure storage of large quantities of hydrogen is still a technological and scientific challenge. In this context, this review proposes a recent state-of-the-art on H2 production capacities from the dehydrogenation reaction of ammonia borane (and selected related amine-boranes) as a safer solid source of H2 by hydrolysis (or solvolysis), catalyzed by nanoparticle-based systems. The review groups the results according to the transition metals constituting the catalyst with a mention to their current cost and availability. This includes the noble metals Rh, Pd, Pt, Ru, Ag, as well as cheaper Co, Ni, Cu, and Fe. For each element, the monometallic and polymetallic structures are presented and the performances are described in terms of turnover frequency and recyclability. The structure-property links are highlighted whenever possible. It appears from all these works that the mastery of the preparation of catalysts remains a crucial point both in terms of process, and control and understanding of the electronic structures of the elaborated nanomaterials. A particular effort of the scientific community remains to be made in this multidisciplinary field with major societal stakes.


Asunto(s)
Boranos , Nanopartículas , Amoníaco , Catálisis , Hidrógeno
3.
Angew Chem Int Ed Engl ; 58(29): 9933-9938, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31087744

RESUMEN

Diamondoids, sp3 -hybridized nanometer-sized diamond-like hydrocarbons (nanodiamonds), difunctionalized with hydroxy and primary phosphine oxide groups, enable the assembly of the first sp3 -C-based chemical sensors by vapor deposition. Both pristine nanodiamonds and palladium nanolayered composites can be used to detect toxic NO2 and NH3 gases. This carbon-based gas sensor technology allows reversible NO2 detection down to 50 ppb and NH3 detection at 25-100 ppm concentration with fast response and recovery processes at 100 °C. Reversible gas adsorption and detection is compatible with 50 % humidity conditions. Semiconducting p-type sensing properties are achieved from devices based on primary phosphine-diamantanol, in which high specific area (ca. 140 m2 g-1 ) and channel nanoporosity derive from H-bonding.

4.
J Org Chem ; 81(19): 8759-8769, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27560114

RESUMEN

Direct unequal C-H bond difunctionalization of phosphorylated diamantane was achieved in high yield from the corresponding phosphonates. Reduction of the functionalized phosphonates provides access to novel primary and secondary alkyl/aryl diamantane phosphines. The prepared primary diamantyl phosphines are quite air stable compared to their adamantyl and especially alkyl or aryl analogues. This finding is corroborated by comparing the singly occupied molecular orbital energy levels of the corresponding phosphine radical cations obtained by density functional theory computations.

5.
Nanoscale ; 7(5): 1956-62, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25535933

RESUMEN

We detail herein readily accessible processes to control previously unobserved robust self-assemblies of nanodiamonds (diamondoids) in micro- and nanocrystals from their mild vapor deposition. The chemical functionalization of uniform and discernible nanodiamonds was found to be a key parameter, and depending on the type of functional group (hydroxy, fluorine, etc.) and its position on the diamondoid, the structure of the discrete deposits can vary dramatically. Thus, well-defined anisotropic structures such as rod, needle, triangle or truncated octahedron shapes can be obtained, and self-assembled edifices of sizes ranging from 20 nm to several hundred micrometers formed with conservation of a similar structure for a given diamondoid. Key thermodynamic data including sublimation enthalpy of diamondoid derivatives are reported, and the SEM of the self-assemblies coupled with EDX analyses and XRD attest the nature and purity of nanodiamond crystal deposits. This attractive method is simple and outperforms in terms of deposit quality dip-coating methods we used. This vapor phase deposition approach is expected to allow for an easy formation of diamondoid nanoobjects on different types of substrates.

6.
J Org Chem ; 79(11): 5369-73, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24816428

RESUMEN

We present an effective sequence for the preparation of phosphonic acid derivatives of the diamondoids diamantane, triamantane, [121]tetramantane, and [1(2,3)4]pentamantane. The reactions of the corresponding diamondoid hydroxy derivatives with PCl3 in sulfuric or trifluoroacetic acid give mono- as well as didichlorophosphorylated diamondoids in high preparative yields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...