Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 147: 110549, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34399526

RESUMEN

Kombucha is a very distinct naturally fermented sweetened tea that has been produced for thousands of years. Fermentation relies on metabolic activities of the complex autochthonous symbiotic microbiota embedded in a floating biofilm and used as a backslop for successive fermentations. Here, we designed a tailor-made microbial consortium representative of the core Kombucha microbiota to drive this fermentation. Microbial (counts, metagenetics), physico-chemical (pH, density) and biochemical (organic acids, volatile compounds) parameters were monitored as well as biofilm formation by confocal laser scanning microscopy and scanning electron microscopy. While nine species were co-inoculated, four (Dekkera bruxellensis, Hanseniaspora uvarum, Acetobacter okinawensis and Liquorilactobacillus nagelii) largely dominated. Microbial activities led to acetic, lactic, succinic and oxalic acids being produced right from the start of fermentation while gluconic and glucuronic acids progressively increased. A distinct shift in volatile profile was also observed with mainly aldehydes identified early on, then high abundances of fatty acids, ketones and esters at the end. Correlation analyses, combining metabolomic and microbial data also showed a shift in species abundances during fermentation. We also determined distinct bacteria-yeast co-occurence patterns in biofilms by microscopy. Our study provides clear evidence that a tailor-made consortium can be successfully used to drive Kombucha fermentations.


Asunto(s)
Consorcios Microbianos , Microbiota , Acetobacter , Biopelículas , Brettanomyces , Fermentación , Hanseniaspora
2.
Mar Drugs ; 18(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322429

RESUMEN

A putative Type III Polyketide synthase (PKSIII) encoding gene was identified from a marine yeast, Naganishia uzbekistanensis strain Mo29 (UBOCC-A-208024) (formerly named as Cryptococcus sp.) isolated from deep-sea hydrothermal vents. This gene is part of a distinct phylogenetic branch compared to all known terrestrial fungal sequences. This new gene encodes a C-terminus extension of 74 amino acids compared to other known PKSIII proteins like Neurospora crassa. Full-length and reduced versions of this PKSIII were successfully cloned and overexpressed in a bacterial host, Escherichia coli BL21 (DE3). Both proteins showed the same activity, suggesting that additional amino acid residues at the C-terminus are probably not required for biochemical functions. We demonstrated by LC-ESI-MS/MS that these two recombinant PKSIII proteins could only produce tri- and tetraketide pyrones and alkylresorcinols using only long fatty acid chain from C8 to C16 acyl-CoAs as starter units, in presence of malonyl-CoA. In addition, we showed that some of these molecules exhibit cytotoxic activities against several cancer cell lines.


Asunto(s)
Antineoplásicos/metabolismo , Basidiomycota/enzimología , Proteínas Fúngicas/metabolismo , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Antineoplásicos/farmacología , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/farmacología , Humanos , Respiraderos Hidrotermales/microbiología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Filogenia , Sintasas Poliquetidas/aislamiento & purificación , Sintasas Poliquetidas/farmacología , Policétidos/farmacología , Especificidad por Sustrato , Células THP-1 , Microbiología del Agua
3.
Front Microbiol ; 11: 586614, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133054

RESUMEN

French PDO Nyons black table olives are produced according to a traditional slow spontaneous fermentation in brine. The manufacture and unique sensorial properties of these olives thus only rely on the autochthonous complex microbiota. This study aimed at unraveling the microbial communities and dynamics of Nyons olives during a 1.5-year-long spontaneous fermentation to determine the main microbial drivers and link microbial species to key metabolites. Fermentations were monitored at a local producer plant at regular time intervals for two harvests and two olive types (organically and conventionally grown) using culture-dependent and metabarcoding (ITS2 for fungi, V3-V4 region for bacteria) approaches. Olives and brines were also sampled for volatiles, organic acids and phenolic compounds. No major differences in microbiota composition were observed according to olive type or harvest period. Throughout the fermentation, yeasts were clearly the most dominant. ITS2 sequencing data revealed complex fungal diversity dominated by Citeromyces nyonsensis, Wickerhamomyces anomalus, Zygotorulaspora mrakii, Candida boidinii and Pichia membranifaciens species. Bacterial communities were dominated by the Celerinatantimonas genus, while lactic acid bacteria remained scarce. Clear shifts in microbial communities and biochemical profiles were observed during fermentation and, by correlating metabolites and microbiota changes, four different phases were distinguished. During the first 7 days, phase I, a fast decrease of filamentous fungal and bacterial populations was observed. Between days 21 and 120, phase II, W. anomalus and C. nyonsensis for fungi and Celerinatantimonas diazotrophica for bacteria dominated the fermentation and were linked to the pH decrease and citric acid production. Phase III, between 120 and 183 days, was characterized by an increase in acids and esters and correlated to increased abundances of Z. mrakii, P. membranifaciens and C. boidinii. During the last months of fermentation, phase IV, microbial communities were dominated by P. membranifaciens and C. boidinii. Both species were strongly correlated to an increase in fruity esters and alcohol abundances. Overall, this study provides an in-depth understanding about microbial species succession and how the microbiota shapes the final distinct olive characteristics. It also constitutes a first step to identify key drivers of this fermentation.

4.
Curr Biol ; 30(22): 4441-4453.e4, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32976806

RESUMEN

Domestication involves recent adaptation under strong human selection and rapid diversification and therefore constitutes a good model for studies of these processes. We studied the domestication of the emblematic white mold Penicillium camemberti, used for the maturation of soft cheeses, such as Camembert and Brie, about which surprisingly little was known, despite its economic and cultural importance. Whole-genome-based analyses of genetic relationships and diversity revealed that an ancient domestication event led to the emergence of the gray-green P. biforme mold used in cheese making, by divergence from the blue-green wild P. fuscoglaucum fungus. Another much more recent domestication event led to the generation of the P. camemberti clonal lineage as a sister group to P. biforme. Penicillium biforme displayed signs of phenotypic adaptation to cheese making relative to P. fuscoglaucum, in terms of whiter color, faster growth on cheese medium under cave conditions, lower amounts of toxin production, and greater ability to prevent the growth of other fungi. The P. camemberti lineage displayed even stronger signs of domestication for all these phenotypic features. We also identified two differentiated P. camemberti varieties, apparently associated with different kinds of cheeses and with contrasted phenotypic features in terms of color, growth, toxin production, and competitive ability. We have thus identified footprints of domestication in these fungi, with genetic differentiation between cheese and wild populations, bottlenecks, and specific phenotypic traits beneficial for cheese making. This study has not only fundamental implications for our understanding of domestication but can also have important effects on cheese making.


Asunto(s)
Queso/microbiología , Microbiología de Alimentos/métodos , Penicillium/genética , Variación Genética , Genoma Fúngico , Fenotipo
5.
Int J Food Microbiol ; 313: 108377, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31670166

RESUMEN

The ability of three Penicillium expansum isolates to produce patulin was first evaluated in YES medium after incubation at 25 °C to select a high patulin producer. Then, a spore suspension of the selected P. expansum 3.78 strain was inoculated onto the surface of Golden delicious apples and incubated at 8 or 20 °C until the mold lesion reached a diameter of 1, 2 or 3 cm. For each lesion size, patulin was quantified from apple samples cut into 1 cm depthwise fractions and widthwise sized cylinders. Maximum patulin concentration, about 80,000 ng/g apple, was obtained at 8 °C for the center and surface sample of the 3 cm diameter lesion. Patulin was systematically found at the highest concentration in the lesions, but still quantified up to one centimeter next to the lesion. Patulin concentrations were not significantly different between the 8 and 20 °C incubation temperature, except for the 3 cm large lesions. Based on these findings, and for lesions less than or equal to 3 cm in diameter, we recommend to consumers to cut off at least 1 cm around and below the mold spot to limit patulin exposure. Apples should also be stored at cool temperatures, below 8 °C, to delay lesion development.


Asunto(s)
Almacenamiento de Alimentos/métodos , Frutas/química , Malus/microbiología , Patulina/análisis , Penicillium/metabolismo , Almacenamiento de Alimentos/instrumentación , Frutas/microbiología , Malus/química , Patulina/biosíntesis , Penicillium/crecimiento & desarrollo , Temperatura
6.
Food Microbiol ; 82: 551-559, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31027818

RESUMEN

Moldy food products that are not subject to pathogenic bacterial contamination could be trimmed by consumers to remove fungal mycelium before consumption. However, prior to giving such recommendations to consumers, it is necessary to evaluate potential mycotoxin migration in these products. This study aimed at quantifying citrinin (CIT) and ochratoxin A (OTA) accumulation and migration in a French semi-hard Comté cheese after artificial inoculation with a CIT- and OTA-producing Penicillium verrucosum strain. At 8 °C, CIT and OTA production started after 14 days and 28 days incubation, respectively; while at 20 °C, both mycotoxins were produced from day 7. At 20 °C, maximum CIT concentration, about 50000 ng/g, was 20 fold that at 8 °C. Regardless of temperature, maximum OTA concentration was about 4000 ng/g cheese. Maximum concentrations were obtained in the upper part of the cheese, but depending on incubation time, mycotoxins were detected up to 1.6 cm in depth. As long as only white mycelium developed on the cheese surface, trimming can be acceptable, but a blue mold color (due to fungal sporulation) was associated with the accumulation of significant amounts of mycotoxins so the product should be discarded.


Asunto(s)
Queso/microbiología , Citrinina/biosíntesis , Microbiología de Alimentos , Ocratoxinas/biosíntesis , Penicillium/metabolismo , Queso/análisis , Citrinina/análisis , Inocuidad de los Alimentos , Francia , Micotoxinas/análisis , Micotoxinas/biosíntesis , Ocratoxinas/análisis , Penicillium/crecimiento & desarrollo , Penicillium/aislamiento & purificación , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/aislamiento & purificación , Esporas Fúngicas/metabolismo , Temperatura
7.
Appl Microbiol Biotechnol ; 101(5): 2043-2056, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27921136

RESUMEN

PR toxin is a well-known isoprenoid mycotoxin almost solely produced by Penicillium roqueforti after growth on food or animal feed. This mycotoxin has been described as the most toxic produced by this species. In this study, an in silico analysis allowed identifying for the first time a 22.4-kb biosynthetic gene cluster involved in PR toxin biosynthesis in P. roqueforti. The pathway contains 11 open reading frames encoding for ten putative proteins including the major fungal terpene cyclase, aristolochene synthase, involved in the first farnesyl-diphosphate cyclization step as well as an oxidoreductase, an oxidase, two P450 monooxygenases, a transferase, and two dehydrogenase enzymes. Gene silencing was used to study three genes (ORF5, ORF6, and ORF8 encoding for an acetyltransferase and two P450 monooxygenases, respectively) and resulted in 20 to 40% PR toxin production reductions in all transformants proving the involvement of these genes and the corresponding enzyme activities in PR toxin biosynthesis. According to the considered silenced gene target, eremofortin A and B productions were also affected suggesting their involvement as biosynthetic intermediates in this pathway. A PR toxin biosynthesis pathway is proposed based on the most recent and available data.


Asunto(s)
Vías Biosintéticas/genética , Familia de Multigenes/genética , Micotoxinas/genética , Micotoxinas/metabolismo , Naftoles/metabolismo , Penicillium/genética , Penicillium/patogenicidad , Acetiltransferasas/genética , Silenciador del Gen , Oxigenasas de Función Mixta/genética , Sistemas de Lectura Abierta/genética , Sesquiterpenos Policíclicos , Sesquiterpenos/metabolismo
8.
Food Microbiol ; 62: 239-250, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27889155

RESUMEN

Mycophenolic acid (MPA) is a secondary metabolite produced by various Penicillium species including Penicillium roqueforti. The MPA biosynthetic pathway was recently described in Penicillium brevicompactum. In this study, an in silico analysis of the P. roqueforti FM164 genome sequence localized a 23.5-kb putative MPA gene cluster. The cluster contains seven genes putatively coding seven proteins (MpaA, MpaB, MpaC, MpaDE, MpaF, MpaG, MpaH) and is highly similar (i.e. gene synteny, sequence homology) to the P. brevicompactum cluster. To confirm the involvement of this gene cluster in MPA biosynthesis, gene silencing using RNA interference targeting mpaC, encoding a putative polyketide synthase, was performed in a high MPA-producing P. roqueforti strain (F43-1). In the obtained transformants, decreased MPA production (measured by LC-Q-TOF/MS) was correlated to reduced mpaC gene expression by Q-RT-PCR. In parallel, mycotoxin quantification on multiple P. roqueforti strains suggested strain-dependent MPA-production. Thus, the entire MPA cluster was sequenced for P. roqueforti strains with contrasted MPA production and a 174bp deletion in mpaC was observed in low MPA-producers. PCRs directed towards the deleted region among 55 strains showed an excellent correlation with MPA quantification. Our results indicated the clear involvement of mpaC gene as well as surrounding cluster in P. roqueforti MPA biosynthesis.


Asunto(s)
Genes Fúngicos , Ácido Micofenólico/metabolismo , Penicillium/genética , Penicillium/metabolismo , Queso/microbiología , Simulación por Computador , Expresión Génica , Silenciador del Gen , Genoma Fúngico , Familia de Multigenes , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Reacción en Cadena de la Polimerasa , Biosíntesis de Proteínas
9.
Int J Food Microbiol ; 241: 141-150, 2017 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-27771579

RESUMEN

Penicillium roqueforti is used as a ripening culture for blue cheeses and largely contributes to their organoleptic quality and typical characteristics. Different types of blue cheeses are manufactured and consumed worldwide and have distinct aspects, textures, flavors and colors. These features are well accepted to be due to the different manufacturing methods but also to the specific P. roqueforti strains used. Indeed, inoculated P. roqueforti strains, via their proteolytic and lipolytic activities, have an effect on both blue cheese texture and flavor. In particular, P. roqueforti produces a wide range of flavor compounds and variations in their proportions influence the flavor profiles of this type of cheese. Moreover, P. roqueforti is also characterized by substantial morphological and genetic diversity thus raising the question about the functional diversity of this species. In this context, 55 representative strains were screened for key metabolic properties including proteolytic activity (by determining free NH2 amino groups) and secondary metabolite production (aroma compounds using HS-Trap GC-MS and mycotoxins via LC-MS/Q-TOF). Mini model cheeses were used for aroma production and proteolysis analyses, whereas Yeast Extract Sucrose (YES) agar medium was used for mycotoxin production. Overall, this study highlighted high functional diversity among isolates. Noteworthy, when only P. roqueforti strains isolated from Protected Designation of Origin (PDO) or Protected Geographical Indication (PGI) blue cheeses were considered, a clear relationship between genetic diversity, population structure and the assessed functional traits was shown.


Asunto(s)
Queso/microbiología , Metaboloma , Micotoxinas/análisis , Naftoles/análisis , Penicillium/clasificación , Penicillium/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Variación Genética , Penicillium/crecimiento & desarrollo , Fenotipo , Metabolismo Secundario
10.
Fish Physiol Biochem ; 37(3): 363-71, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20882336

RESUMEN

This study is an attempt to go further in the comprehension of the effects of heavy fuel oil in the context of an accidental oil spill at sea. It focuses on the link between morphological and functional impacts of realistic doses of the dissolved fraction of a heavy fuel oil on fish gills. Juvenile turbot, Scophthalmus maximus were exposed to the dissolved fraction of a heavy fuel oil for 5 days and then placed 30 days in clean sea water for recovery. During the contamination period, the concentration of the 16 US EPA priority poly-aromatic hydrocarbons showed small variations around a mean value of 321.0 ± 9.1 ng l⁻¹ (mean ± SEM). The contamination induced a 64% increase in hepatic cytochrome P 450 1A (Western blot analysis). Osmolality, [Na⁺] and [Cl⁻] rapidly and significantly increased (by 14, 23 and 28% respectively) and slowly decreased to normal levels during the recovery period. At the same time, branchial histology showed decreases in the number of mucocytes (by 30%) and of chloride cells (by 95%) in the interlamellar epithelium. Therefore, it is suggested that the osmotic imbalance observed after the 5 days of exposure to the dissolved fraction of the heavy fuel oil is the consequence of the structural alteration of the gills i.e, the strong reduction of ionocyte numbers.


Asunto(s)
Enfermedades de los Peces/inducido químicamente , Peces Planos , Aceites Combustibles/toxicidad , Branquias/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Epitelio/efectos de los fármacos , Epitelio/patología , Enfermedades de los Peces/patología , Regulación Enzimológica de la Expresión Génica , Branquias/enzimología , Branquias/patología , Branquias/fisiología
11.
Biomarkers ; 9(6): 435-46, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15849064

RESUMEN

Flatfishes, turbots (Scophthalmus maximus), were injected intraperitoneally with two doses of fuel oil number 2. Biliary metabolites were evaluated by fixed fluorescence to verify the efficiency of intoxication. Ethoxyresorufin-O-deethylase (EROD) activity was compared with chromosomal damage measured by flow cytometry. The analysis of biliary metabolites showed a good dose-response relation and constitutes a clear reference for the subsequent measurements. Comparing flow cytometry and EROD results, a shorter delay of response for EROD activity was obtained, but chromosomal damage was significant only after one week. The persistence of the EROD response was shorter, while the genotoxic signal still persisted after one month. The measurement of chromosomal damage allowed a good differentiation between the two tested doses. In the case of EROD activity, the results were less clear. The results suggest that within a few weeks after exposure to fuel oil number 2, the measurements of chromosomal damage by flow cytometry can be used to detect a dose-dependent genotoxic response in fish.


Asunto(s)
Cromosomas/ultraestructura , Citometría de Flujo/métodos , Contaminantes Químicos del Agua , Animales , Diferenciación Celular , Citocromo P-450 CYP1A1/metabolismo , Relación Dosis-Respuesta a Droga , Monitoreo del Ambiente , Contaminantes Ambientales , Peces , Aceites Combustibles , Mutágenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Espectrometría de Fluorescencia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...