Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Phytopathology ; 112(1): 197-204, 2022 Jan.
Article En | MEDLINE | ID: mdl-34698540

'Candidatus Liberibacter asiaticus' is associated with the devastating citrus disease Huanglongbing (HLB). It is transmitted by grafting infected material to healthy plants and by the feeding of the Asian citrus psyllid (Diaphorina citri). Previously, we demonstrated that a metabolomics approach using proton-nuclear magnetic resonance spectroscopy discriminates healthy from diseased plants via grafting. This work assessed the capability of this technology in discriminating healthy and diseased plants when the bacterium is vectored by psyllids. One-year-old greenhouse-grown 'Lisbon' lemon trees were exposed to either carrier psyllids (exposed, n = 10), or psyllids that were free of 'Candidatus Liberibacter asiaticus' (control, n = 6). Leaf metabolites were tracked for 1 year and disease diagnosis was made using quantitative PCR. Overall, 31 water-soluble metabolites were quantified in leaves, including four sugars and 12 amino acids. Analysis via nonmetric multidimensional scaling and principal component analysis revealed significant differences between the leaf metabolome of control versus infected trees beginning at 8 weeks postexposure, including alterations in glucose and quinic acid concentrations. These findings provide a longitudinal overview of the metabolic effects of HLB during the early phases of disease, and confirm previous experimental work demonstrating that infection elicits changes in the leaf metabolome that enables discrimination between healthy and infected plants. Here we demonstrate that the mode of inoculation (i.e., graft versus psyllid) results in a similar pathology.


Citrus , Hemiptera , Rhizobiaceae , Animals , Liberibacter , Plant Diseases
2.
Mol Plant Pathol ; 22(1): 64-76, 2021 01.
Article En | MEDLINE | ID: mdl-33118689

Complementary (c)DNA clones corresponding to the full-length genome of T36CA (a Californian isolate of Citrus tristeza virus with the T36 genotype), which shares 99.1% identity with that of T36FL (a T36 isolate from Florida), were made into a vector system to express the green fluorescent protein (GFP). Agroinfiltration of two prototype T36CA-based vectors (pT36CA) to Nicotiana benthamiana plants resulted in local but not systemic GFP expression/viral infection. This contrasted with agroinfiltration of the T36FL-based vector (pT36FL), which resulted in both local and systemic GFP expression/viral infection. A prototype T36CA systemically infected RNA silencing-defective N. benthamiana lines, demonstrating that a genetic basis for its defective systemic infection was RNA silencing. We evaluated the in planta bioactivity of chimeric pT36CA-pT36FL constructs and the results suggested that nucleotide variants in several open reading frames of the prototype T36CA could be responsible for its defective systemic infection. A single amino acid substitution in each of two silencing suppressors, p20 (S107G) and p25 (G36D), of prototype T36CA facilitated its systemic infectivity in N. benthamiana (albeit with reduced titre relative to that of T36FL) but not in Citrus macrophylla plants. Enhanced virus accumulation and, remarkably, robust systemic infection of T36CA in N. benthamiana and C. macrophylla plants, respectively, required two additional amino acid substitutions engineered in p65 (N118S and S158L), a putative closterovirus movement protein. The availability of pT36CA provides a unique opportunity for comparative analysis to identify viral coding and noncoding nucleotides or sequences involved in functions that are vital for in planta infection.


Closterovirus/genetics , Nicotiana/virology , Plant Diseases/virology , Viral Proteins/metabolism , Closterovirus/physiology , Host-Pathogen Interactions , RNA Interference , Nicotiana/genetics , Viral Proteins/genetics
3.
J Proteome Res ; 19(6): 2247-2263, 2020 06 05.
Article En | MEDLINE | ID: mdl-32338516

Presymptomatic detection of citrus trees infected with Candidatus Liberibacter asiaticus (CLas), the bacterial pathogen associated with Huanglongbing (HLB; citrus greening disease), is critical to controlling the spread of the disease. To test whether infected citrus trees produce systemic signals that may be used for indirect disease detection, lemon (Citrus limon) plants were graft-inoculated with either CLas-infected or control (CLas-) budwood, and leaf samples were longitudinally collected over 46 weeks and analyzed for plant changes associated with CLas infection. RNA, protein, and metabolite samples extracted from leaves were analyzed using RNA-Seq, mass spectrometry, and 1H NMR spectroscopy, respectively. Significant differences in specific transcripts, proteins, and metabolites were observed between CLas-infected and control plants as early as 2 weeks post graft (wpg). The most dramatic differences between the transcriptome and proteome of CLas-infected and control plants were observed at 10 wpg, including coordinated increases in transcripts and proteins of citrus orthologs of known plant defense genes. This integrated approach to quantifying plant molecular changes in leaves of CLas-infected plants supports the development of diagnostic technology for presymptomatic or early disease detection as part of efforts to control the spread of HLB into uninfected citrus groves.


Citrus , Hemiptera , Rhizobiaceae , Animals , Liberibacter , Plant Diseases/genetics , Proteomics , Rhizobiaceae/genetics , Transcriptome
4.
Proc Natl Acad Sci U S A ; 117(7): 3492-3501, 2020 02 18.
Article En | MEDLINE | ID: mdl-32015115

Early detection and rapid response are crucial to avoid severe epidemics of exotic pathogens. However, most detection methods (molecular, serological, chemical) are logistically limited for large-scale survey of outbreaks due to intrinsic sampling issues and laboratory throughput. Evaluation of 10 canines trained for detection of a severe exotic phytobacterial arboreal pathogen, Candidatus Liberibacter asiaticus (CLas), demonstrated 0.9905 accuracy, 0.8579 sensitivity, and 0.9961 specificity. In a longitudinal study, cryptic CLas infections that remained subclinical visually were detected within 2 wk postinfection compared with 1 to 32 mo for qPCR. When allowed to interrogate a diverse range of in vivo pathogens infecting an international citrus pathogen collection, canines only reacted to Liberibacter pathogens of citrus and not to other bacterial, viral, or spiroplasma pathogens. Canines trained to detect CLas-infected citrus also alerted on CLas-infected tobacco and periwinkle, CLas-bearing psyllid insect vectors, and CLas cocultured with other bacteria but at CLas titers below the level of molecular detection. All of these observations suggest that canines can detect CLas directly rather than only host volatiles produced by the infection. Detection in orchards and residential properties was real time, ∼2 s per tree. Spatiotemporal epidemic simulations demonstrated that control of pathogen prevalence was possible and economically sustainable when canine detection was followed by intervention (i.e., culling infected individuals), whereas current methods of molecular (qPCR) and visual detection failed to contribute to the suppression of an exponential trajectory of infection.


Citrus/microbiology , Dogs/physiology , Plant Diseases/microbiology , Rhizobiaceae/physiology , Smell , Animals , Hemiptera/microbiology , Hemiptera/physiology , Insect Vectors/microbiology , Insect Vectors/physiology , Longitudinal Studies , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification
5.
J Proteome Res ; 19(2): 719-732, 2020 02 07.
Article En | MEDLINE | ID: mdl-31885275

"Candidatus Liberibacter asiaticus" (CLas) is the bacterium associated with the citrus disease Huanglongbing (HLB). Current CLas detection methods are unreliable during presymptomatic infection, and understanding CLas pathogenicity to help develop new detection techniques is challenging because CLas has yet to be isolated in pure culture. To understand how CLas affects citrus metabolism and whether infected plants produce systemic signals that can be used to develop improved detection techniques, leaves from Washington Navel orange (Citrus sinensis (L.) Osbeck) plants were graft-inoculated with CLas and longitudinally studied using transcriptomics (RNA sequencing), proteomics (liquid chromatography-tandem mass spectrometry), and metabolomics (proton nuclear magnetic resonance). Photosynthesis gene expression and protein levels were lower in infected plants compared to controls during late infection, and lower levels of photosynthesis proteins were identified as early as 8 weeks post-grafting. These changes coordinated with higher sugar concentrations, which have been shown to accumulate during HLB. Cell wall modification and degradation gene expression and proteins were higher in infected plants during late infection. Changes in gene expression and proteins related to plant defense were observed in infected plants as early as 8 weeks post-grafting. These results reveal coordinated changes in greenhouse navel leaves during CLas infection at the transcript, protein, and metabolite levels, which can inform of biomarkers of early infection.


Citrus sinensis , Citrus , Hemiptera , Rhizobiaceae , Animals , Citrus sinensis/genetics , Liberibacter , Metabolomics , Plant Diseases/genetics , Proteomics , Rhizobiaceae/genetics , Transcriptome
6.
Phytopathology ; 109(12): 2022-2032, 2019 Dec.
Article En | MEDLINE | ID: mdl-31433274

Huanglongbing (HLB) is a severe, incurable citrus disease caused by the bacterium 'Candidatus Liberibacter asiaticus' (CLas). Although citrus leaves serve as the site of initial infection, CLas is known to migrate to and colonize the root system; however, little is known about the impact of CLas infection on root metabolism and resident microbial communities. Scions of 'Lisbon' lemon and 'Washington Navel' orange grafted onto 'Carrizo' rootstock were grafted with either CLas-infected citrus budwood or uninfected budwood. Roots were obtained from trees 46 weeks after grafting and analyzed via 1H nuclear magnetic resonance spectroscopy to identify water-soluble root metabolites and high-throughput sequencing of 16S rRNA and ITS gene amplicons to determine the relative abundance of bacterial and fungal taxa in the root rhizosphere and endosphere. In both citrus varieties, 27 metabolites were identified, of which several were significantly different between CLas(+) and control plants. CLas infection also appeared to alter the microbial community structure near and inside the roots of citrus plants. Nonmetric multidimensional scaling (NMDS) and a principal coordinate analysis (PCoA) revealed distinct metabolite and microbial profiles, demonstrating that CLas impacts the root metabolome and microbiome in a manner that is variety-specific.


Citrus , Metabolome , Microbiota , Rhizobiaceae , Biodiversity , Citrus/microbiology , DNA, Ribosomal Spacer/genetics , Microbial Interactions , Microbiota/genetics , Plant Diseases/microbiology , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/physiology , Washington
7.
Sci Rep ; 7(1): 10154, 2017 08 31.
Article En | MEDLINE | ID: mdl-28860662

Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) transmits "Candidatus Liberibacter asiaticus" (CLas), an unculturable alpha-proteobacterium associated with citrus Huanglongbing (HLB). CLas has recently been found in California. Understanding ACP population diversity is necessary for HLB regulatory practices aimed at reducing CLas spread. In this study, two circular ACP mitogenome sequences from California (mt-CApsy, ~15,027 bp) and Florida (mt-FLpsy, ~15,012 bp), USA, were acquired. Each mitogenome contained 13 protein coding genes, 2 ribosomal RNA and 22 transfer RNA genes, and a control region varying in sizes. The Californian mt-CApsy was identical to the Floridian mt-FLpsy, but different from the mitogenome (mt-GDpsy) of Guangdong, China, in 50 single nucleotide polymorphisms (SNPs). Further analyses were performed on sequences in cox1 and trnAsn regions with 100 ACPs, SNPs in nad1-nad4-nad5 locus through PCR with 252 ACP samples. All results showed the presence of a Chinese ACP cluster (CAC) and an American ACP cluster (AAC). We proposed that ACP in California was likely not introduced from China based on our current ACP collection but somewhere in America. However, more studies with ACP samples from around the world are needed. ACP mitogenome sequence analyses will facilitate ACP population research.


Genome, Mitochondrial , Hemiptera/genetics , Phylogeny , Animals , Electron Transport Complex IV/genetics , Genetic Speciation , Hemiptera/classification , Polymorphism, Single Nucleotide , Sequence Homology
...