Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
JCI Insight ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38771643

Alloreactive memory, unlike naïve, CD8+ T cells resist transplantation tolerance protocols and are a critical barrier to long-term graft acceptance in the clinic. We here show that semi-allogeneic pregnancy successfully reprogrammed memory fetus/graft-specific CD8+ T cells (TFGS) towards hypofunction. Female C57BL/6 mice harboring memory CD8+ T cells generated by the rejection of BALB/c skin grafts and then mated with BALB/c males achieved rates of pregnancy comparable to naive controls. Post-partum fetus/graft-specific CD8+ T cells (TFGS) from skin-sensitized dams upregulated expression of T cell exhaustion (TEX) markers (Tox, Eomes, PD-1, TIGIT, and Lag3). Transcriptional analysis corroborated an enrichment of canonical T exhaustion (TEX) genes in post-partum memory TFGS and additionally, revealed a downregulation of a subset of memory-associated transcripts. Strikingly, pregnancy induced extensive epigenetic modifications of exhaustion- and memory-associated genes in memory TFGS, whereas minimal epigenetic modifications were observed in naive TFGS cells. Finally, post-partum memory TFGS durably expressed the exhaustion-enriched phenotype, and their susceptibility to transplantation tolerance was significantly restored compared to memory TFGS. These findings advance the concept of pregnancy as an epigenetic modulator inducing hypofunction in memory CD8+ T cells that has relevance not only for pregnancy and transplantation tolerance, but also for tumor immunity and chronic infections.

2.
Cell Rep ; 42(10): 113299, 2023 10 31.
Article En | MEDLINE | ID: mdl-37864794

The current paradigm indicates that naive T cells are primed in secondary lymphoid organs. Here, we present evidence that intranasal administration of peptide antigens appended to nanofibers primes naive CD8+ T cells in the lung independently and prior to priming in the draining mediastinal lymph node (MLN). Notably, comparable accumulation and transcriptomic responses of CD8+ T cells in lung and MLN are observed in both Batf3KO and wild-type (WT) mice, indicating that, while cDC1 dendritic cells (DCs) are the major subset for cross-presentation, cDC2 DCs alone are capable of cross-priming CD8+ T cells both in the lung and draining MLN. Transcription analyses reveal distinct transcriptional responses in lung cDC1 and cDC2 to intranasal nanofiber immunization. However, both DC subsets acquire shared transcriptional responses upon migration into the lymph node, thus uncovering a stepwise activation process of cDC1 and cDC2 toward their ability to cross-prime effector and functional memory CD8+ T cell responses.


CD8-Positive T-Lymphocytes , Dendritic Cells , Mice , Animals , Lung , Cross-Priming , Lymph Nodes
3.
Res Sq ; 2023 Apr 05.
Article En | MEDLINE | ID: mdl-37066154

Alloreactive memory T cells, unlike naive T cells, fail to be restrained by transplantation tolerance protocols or regulatory T cells, and therefore represent a critical barrier to long-term graft acceptance. Using female mice sensitized by rejection of fully-mismatched paternal skin allografts, we show that subsequent semi-allogeneic pregnancy successfully reprograms memory fetus/graft-specific CD8+ T cells (TFGS) towards hypofunction in a manner that is mechanistically distinct from naive TFGS. Post-partum memory TFGS were durably hypofunctional, exhibiting enhanced susceptibility to transplantation tolerance induction. Furthermore, multi-omics studies revealed that pregnancy induced extensive phenotypic and transcriptional modifications in memory TFGS reminiscent of T cell exhaustion. Strikingly, at loci transcriptionally modified in both naive and memory TFGS during pregnancy, chromatin remodeling was observed exclusively in memory and not naive TFGS. These data reveal a novel link between T cell memory and hypofunction via exhaustion circuits and pregnancy-mediated epigenetic imprinting. This conceptual advance has immediate clinical relevance to pregnancy and transplantation tolerance.

4.
JCI Insight ; 7(11)2022 06 08.
Article En | MEDLINE | ID: mdl-35674134

Dominant infectious tolerance explains how brief tolerance-inducing therapies result in lifelong tolerance to donor antigens and "linked" third-party antigens, while recipient sensitization and ensuing immunological memory prevent the successful induction of transplant tolerance. In this study, we juxtapose these 2 concepts to test whether mechanisms of dominant infectious tolerance can control a limited repertoire of memory T and B cells. We show that sensitization to a single donor antigen is sufficient to prevent stable transplant tolerance, rendering it unstable. Mechanistic studies revealed that recall antibody responses and memory CD8+ T cell expansion were initially controlled, but memory CD4+Foxp3- T cell (Tconv) responses were not. Remarkably, naive donor-specific Tconvs at tolerance induction also acquired a resistance to tolerance, proliferating and acquiring a phenotype similar to memory Tconvs. This phenomenon of "linked sensitization" underscores the challenges of reprogramming a primed immune response toward tolerance and identifies a potential therapeutic checkpoint for synergizing with costimulation blockade to achieve transplant tolerance in the clinic.


CD4-Positive T-Lymphocytes , Transplantation Tolerance , Animals , Graft Rejection/prevention & control , Immune Tolerance , Mice , Mice, Inbred C57BL
6.
J Clin Invest ; 131(1)2021 01 04.
Article En | MEDLINE | ID: mdl-33393512

Immunological tolerance to semiallogeneic fetuses is necessary to achieving successful first pregnancy and permitting subsequent pregnancies with the same father. Paradoxically, pregnancy is an important cause of sensitization, resulting in the accelerated rejection of offspring-matched allografts. The underlying basis for divergent outcomes following reencounter of the same alloantigens on transplanted organs versus fetuses in postpartum females is incompletely understood. Using a mouse model that allows concurrent tracking of endogenous fetus-specific T and B cell responses in a single recipient, we show that semiallogeneic pregnancies simultaneously induce fetus-specific T cell tolerance and humoral sensitization. Pregnancy-induced antibodies, but not B cells, impeded transplantation tolerance elicited by costimulation blockade to offspring-matched cardiac grafts. Remarkably, in B cell-deficient mice, allogeneic pregnancy enabled the spontaneous acceptance of fetus-matched allografts. The presence of pregnancy-sensitized B cells that cannot secrete antibodies at the time of heart transplantation was sufficient to precipitate rejection and override pregnancy-established T cell tolerance. Thus, while induction of memory B cells and alloantibodies by pregnancies establishes formidable barriers to transplant success for multigravid women, our observations raise the possibility that humoral desensitization will not only improve transplantation outcomes, but also reveal an unexpected propensity of multiparous recipients to achieve tolerance to offspring-matched allografts.


B-Lymphocytes/immunology , Fetal Tissue Transplantation , Fetus/immunology , Isoantibodies/immunology , T-Lymphocytes/immunology , Transplantation Tolerance , Allografts , Animals , Female , Mice , Mice, Transgenic , Pregnancy
...