Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Cancer Immunol Res ; 12(1): 60-71, 2024 01 03.
Article En | MEDLINE | ID: mdl-37902604

T cell-retargeting therapies have transformed the therapeutic landscape for hematologic diseases. T cell-dependent bispecific antibodies (TDB) function as conditional agonists that induce a polyclonal T-cell response, resulting in target cell destruction and cytokine release. The relationship between this response and its effects on surrounding innate immune populations has not been fully explored. Here we show that treatment with mosunetuzumab in patients results in natural killer (NK) cell activation in the peripheral blood. We modeled this phenomenon in vitro and found that TDB-mediated killing activated NK cells, increasing NK function and antibody-dependent cellular cytotoxicity (ADCC), and enhanced the capability of macrophages to perform antibody-dependent cellular phagocytosis (ADCP). This enhancement was triggered by cytokines released through TDB treatment, with IL2 and IFNγ being major drivers for increased ADCC and ADCP, respectively. Surprisingly, cytolytic ability could be further augmented through neutralization of IL10 for NK cells and TNFα for macrophages. Finally, we showed that TDB treatment enhanced the efficacy of Fc-driven killing to an orthogonal solid tumor target in vivo. These results provide rationale for novel antibody therapy combinations that take advantage of both adaptive and innate immune responses.


Antibodies, Bispecific , Cytokines , Humans , Cell Line, Tumor , Antibody-Dependent Cell Cytotoxicity , T-Lymphocytes , Immunity, Innate , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use
2.
Blood ; 143(9): 822-832, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38048694

ABSTRACT: CD20 is an established therapeutic target in B-cell malignancies. The CD20 × CD3 bispecific antibody mosunetuzumab has significant efficacy in B-cell non-Hodgkin lymphomas (NHLs). Because target antigen loss is a recognized mechanism of resistance, we evaluated CD20 expression relative to clinical response in patients with relapsed and/or refractory NHL in the phase 1/2 GO29781 trial investigating mosunetuzumab monotherapy. CD20 was studied using immunohistochemistry (IHC), RNA sequencing, and whole-exome sequencing performed centrally in biopsy specimens collected before treatment at predose, during treatment, or upon progression. Before treatment, most patients exhibited a high proportion of tumor cells expressing CD20; however, in 16 of 293 patients (5.5%) the proportion was <10%. Analyses of paired biopsy specimens from patients on treatment revealed that CD20 levels were maintained in 29 of 30 patients (97%) vs at progression, where CD20 loss was observed in 11 of 32 patients (34%). Reduced transcription or acquisition of truncating mutations explained most but not all cases of CD20 loss. In vitro modeling confirmed the effects of CD20 variants identified in clinical samples on reduction of CD20 expression and missense mutations in the extracellular domain that could block mosunetuzumab binding. This study expands the knowledge about the occurrence of target antigen loss after anti-CD20 therapeutics to include CD20-targeting bispecific antibodies and elucidates mechanisms of reduced CD20 expression at disease progression that may be generalizable to other anti-CD20 targeting agents. These results also confirm the utility of readily available IHC staining for CD20 as a tool to inform clinical decisions. This trial was registered at www.ClinicalTrials.gov as #NCT02500407.


Antibodies, Bispecific , Antineoplastic Agents , Lymphoma, B-Cell , Humans , Antigens, CD20/genetics , Neoplasm Recurrence, Local/drug therapy , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics , Antineoplastic Agents/therapeutic use
3.
Am J Hematol ; 98(3): 449-463, 2023 03.
Article En | MEDLINE | ID: mdl-36594167

The treatment of patients with relapsed or refractory lymphoid neoplasms represents a significant clinical challenge. Here, we identify the pro-survival BCL-2 protein family member MCL-1 as a resistance factor for the BCL-2 inhibitor venetoclax in non-Hodgkin lymphoma (NHL) cell lines and primary NHL samples. Mechanistically, we show that the antibody-drug conjugate polatuzumab vedotin promotes MCL-1 degradation via the ubiquitin/proteasome system. This targeted MCL-1 antagonism, when combined with venetoclax and the anti-CD20 antibodies obinutuzumab or rituximab, results in tumor regressions in preclinical NHL models, which are sustained even off-treatment. In a Phase Ib clinical trial (NCT02611323) of heavily pre-treated patients with relapsed or refractory NHL, 25/33 (76%) patients with follicular lymphoma and 5/17 (29%) patients with diffuse large B-cell lymphoma achieved complete or partial responses with an acceptable safety profile when treated with the recommended Phase II dose of polatuzumab vedotin in combination with venetoclax and an anti-CD20 antibody.


Immunoconjugates , Lymphoma, Non-Hodgkin , Humans , Myeloid Cell Leukemia Sequence 1 Protein/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Lymphoma, Non-Hodgkin/drug therapy , Lymphoma, Non-Hodgkin/pathology , Rituximab/therapeutic use , Immunoconjugates/therapeutic use
4.
MAbs ; 14(1): 2115213, 2022.
Article En | MEDLINE | ID: mdl-36206404

T cell-engaging bispecific antibodies (TCEs) are clinically effective treatments for hematological cancers. While the utility of TCEs in solid malignancies is being explored, toxicities arising from antigen expression on normal tissues have slowed or halted several clinical trials. Here, we describe the development of TCEs that preferentially drive T cell-mediated death against target cells co-expressing two tumor-associated antigens. We show that Ly6E and B7-H4 are simultaneously expressed on approximately 50% of breast cancers, whereas normal tissue expression is limited and mostly orthogonal. Traditional bispecific TCEs targeting a singular antigen, either Ly6E or B7-H4, are active when paired with high-affinity CD3-engagers, but normal tissue expression presents a toxicity risk. Treatment with a murine cross-reactive B7-H4-TCE results in rapid and severe weight loss in mice along with damage to B7-H4-expressing tissues. To overcome on-target toxicity, we designed trispecific antibodies co-targeting Ly6E, B7-H4, and CD3 and characterized the impact of dual-antigen binding and the relative placement of each binding domain on tumor killing in vitro and in vivo. In vitro killing of tumor cells co-expressing both antigens correlates to the placement of the higher affinity B7-H4 binding domain, with only modest enhancements seen upon addition of Ly6E binding. In xenograft models, avid binding of appropriately designed trispecific TCEs enables tumor growth inhibition while evading the poor tolerability seen with active bispecific TCEs. Collectively these data highlight the potential for dual-antigen targeting to improve safety and efficacy, and expand the scope of tumors that may effectively be treated by TCEs.Abbreviations: Chimeric antigen receptor T cells (CAR-Ts), dual-antigen targeted T cell engagers (DAT-TCE), Fragment antigen-binding (Fab), Hematoxylin and eosin (H&E), Institutional Animal Care and Use Committee (IACUC), Immunoglobulin G (IgG), immunohistochemistry (IHC), NOD SCID gamma (NSG), peripheral blood mononuclear cells (PBMCs), surface plasmon resonance (SPR), T cell-engagers (TCEs).


Antibodies, Bispecific , Receptors, Chimeric Antigen , Animals , Antibodies, Bispecific/pharmacology , Cell Line, Tumor , Eosine Yellowish-(YS) , Hematoxylin , Humans , Immunoglobulin G , Leukocytes, Mononuclear , Mice , Mice, SCID , T-Lymphocytes , Xenograft Model Antitumor Assays
6.
Mol Cancer Ther ; 21(6): 974-985, 2022 06 01.
Article En | MEDLINE | ID: mdl-35364611

New therapeutics and combination regimens have led to marked clinical improvements for the treatment of a subset of colorectal cancer. Immune checkpoint inhibitors have shown clinical efficacy in patients with mismatch-repair-deficient or microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). However, patients with microsatellite-stable (MSS) or low levels of microsatellite instable (MSI-L) colorectal cancer have not benefited from these immune modulators, and the survival outcome remains poor for the majority of patients diagnosed with mCRC. In this article, we describe the discovery of a novel T-cell-dependent bispecific antibody (TDB) targeting tumor-associated antigen LY6G6D, LY6G6D-TDB, for the treatment of colorectal cancer. RNAseq analysis showed that LY6G6D was differentially expressed in colorectal cancer with high prevalence in MSS and MSI-L subsets, whereas LY6G6D expression in normal tissues was limited. IHC confirmed the elevated expression of LY6G6D in primary and metastatic colorectal tumors, whereas minimal or no expression was observed in most normal tissue samples. The optimized LY6G6D-TDB, which targets a membrane-proximal epitope of LY6G6D and binds to CD3 with high affinity, exhibits potent antitumor activity both in vitro and in vivo. In vitro functional assays show that LY6G6D-TDB-mediated T-cell activation and cytotoxicity are conditional and target dependent. In mouse xenograft tumor models, LY6G6D-TDB demonstrates antitumor efficacy as a single agent against established colorectal tumors, and enhanced efficacy can be achieved when LY6G6D-TDB is combined with PD-1 blockade. Our studies provide evidence for the therapeutic potential of LY6G6D-TDB as an effective treatment option for patients with colorectal cancer.


Antibodies, Bispecific , Colorectal Neoplasms , Immunoglobulins , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunoglobulins/immunology , Mice , Microsatellite Instability , T-Lymphocytes/immunology
7.
Clin Cancer Res ; 28(7): 1294-1301, 2022 04 01.
Article En | MEDLINE | ID: mdl-34980599

PURPOSE: Targeting CD79B using antibody-drug conjugates (ADC) is an effective therapeutic strategy in B-cell non-Hodgkin lymphoma (B-NHL). We investigated DCDS0780A, an anti-CD79B ADC with THIOMAB technology (TDC) that consistently conjugates two anti-neoplastic molecules per antibody, in contrast with ADCs with heterogeneous loads. PATIENTS AND METHODS: This phase 1 study enrolled 60 patients with histologically confirmed B-NHL that had relapsed/failed to respond following ≥1 prior treatment regimens; 41 (68%) had diffuse large B-cell lymphoma (DLBCL). Fifty-one patients received DCDS0780A monotherapy once every 3 weeks (0.3-4.8 mg/kg); 9 received combination therapy (3.6-4.8 mg/kg) with rituximab. RESULTS: Fifty-four (90%) patients experienced adverse events related to study drug, the most common of which were blurred vision, fatigue, corneal deposits, neutropenia, nausea, and peripheral neuropathy. 4.8 mg/kg was the highest dose tested and the recommended phase II dose. The pharmacokinetic profile was linear at doses ≥1.2 mg/kg. Response rate in all-treated patients (N = 60) was 47% (n = 28), including 17 complete responses (28%) and 11 partial responses (18%). The median duration of response (15.2 months) was the same for all responders (n = 28) and patients with DLBCL (n = 20). CONCLUSIONS: DCDS0780A as the TDC format for CD79B was tested at higher doses than its ADC counterpart investigated earlier, leading to deep responses. However, dose intensity was limited by ocular toxicities seen at the higher doses indicating that the TDC format was unable, in the current study, to expand the therapeutic index for the CD79B target. The encouraging antitumor activity advocates continuation of investigations into novel ADC technologies.


Immunoconjugates , Lymphoma, Large B-Cell, Diffuse , Neutropenia , Combined Modality Therapy , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Neutropenia/chemically induced , Rituximab/adverse effects
8.
Leukemia ; 36(4): 1006-1014, 2022 04.
Article En | MEDLINE | ID: mdl-35001074

Despite the recent progress, multiple myeloma (MM) is still essentially incurable and there is a need for additional effective treatments with good tolerability. RO7297089 is a novel bispecific BCMA/CD16A-directed innate cell engager (ICE®) designed to induce BCMA+ MM cell lysis through high affinity binding of CD16A and retargeting of NK cell cytotoxicity and macrophage phagocytosis. Unlike conventional antibodies approved in MM, RO7297089 selectively targets CD16A with no binding of other Fcγ receptors, including CD16B on neutrophils, and irrespective of 158V/F polymorphism, and its activity is less affected by competing IgG suggesting activity in the presence of M-protein. Structural analysis revealed this is due to selective interaction with a single residue (Y140) uniquely present in CD16A opposite the Fc binding site. RO7297089 induced tumor cell killing more potently than conventional antibodies (wild-type and Fc-enhanced) and induced lysis of BCMA+ cells at very low effector-to-target ratios. Preclinical toxicology data suggested a favorable safety profile as in vitro cytokine release was minimal and no RO7297089-related mortalities or adverse events were observed in cynomolgus monkeys. These data suggest good tolerability and the potential of RO7297089 to be a novel effective treatment of MM patients.


Antibodies, Bispecific , Multiple Myeloma , B-Cell Maturation Antigen , Humans , Multiple Myeloma/drug therapy , Phagocytosis , Receptors, IgG
9.
Mol Cancer Ther ; 20(6): 1112-1120, 2021 06.
Article En | MEDLINE | ID: mdl-33722856

Calicheamicin antibody-drug conjugates (ADCs) are effective therapeutics for leukemias with two recently approved in the United States: Mylotarg (gemtuzumab ozogamicin) targeting CD33 for acute myeloid leukemia and Besponsa (inotuzumab ozogamicin) targeting CD22 for acute lymphocytic leukemia. Both of these calicheamicin ADCs are heterogeneous, aggregation-prone, and have a shortened half-life due to the instability of the acid-sensitive hydrazone linker in circulation. We hypothesized that we could improve upon the heterogeneity, aggregation, and circulation stability of calicheamicin ADCs by directly attaching the thiol of a reduced calicheamicin to an engineered cysteine on the antibody via a disulfide bond to generate a linkerless and traceless conjugate. We report herein that the resulting homogeneous conjugates possess minimal aggregation and display high in vivo stability with 50% of the drug remaining conjugated to the antibody after 21 days. Furthermore, these calicheamicin ADCs are highly efficacious in mouse models of both solid tumor (HER2+ breast cancer) and hematologic malignancies (CD22+ non-Hodgkin lymphoma). Safety studies in rats with this novel calicheamicin ADC revealed an increased tolerability compared with that reported for Mylotarg. Overall, we demonstrate that applying novel linker chemistry with site-specific conjugation affords an improved, next-generation calicheamicin ADC.


Antibiotics, Antineoplastic/therapeutic use , Calicheamicins/therapeutic use , Immunoconjugates/therapeutic use , Animals , Antibiotics, Antineoplastic/pharmacology , Calicheamicins/pharmacology , Disease Models, Animal , Humans , Immunoconjugates/pharmacology , Mice
10.
Mol Cancer Ther ; 20(2): 340-346, 2021 02.
Article En | MEDLINE | ID: mdl-33273056

We are interested in developing a second generation of antibody-drug conjugates (ADCs) for the treatment of non-Hodgkin lymphoma (NHL) that could provide a longer duration of response and be more effective in indolent NHL than the microtubule-inhibiting ADCs pinatuzumab vedotin [anti-CD22-vc-monomethyl auristatin E (MMAE)] and polatuzumab vedotin (anti-CD79b-vc-MMAE). Pinatuzumab vedotin (anti-CD22-vc-MMAE) and polatuzumab vedotin (anti-CD79b-vc-MMAE) are ADCs that contain the microtubule inhibitor MMAE. Clinical trial data suggest that these ADCs have promising efficacy for the treatment of NHL; however, some patients do not respond or become resistant to the ADCs. We tested an anti-CD22 ADC with a seco-CBI-dimer payload, thio-Hu anti-CD22-(LC:K149C)-SN36248, and compared it with pinatuzumab vedotin for its efficacy and duration of response in xenograft models and its ability to deplete normal B cells in cynomolgus monkeys. We found that anti-CD22-(LC:K149C)-SN36248 was effective in xenograft models resistant to pinatuzumab vedotin, gave a longer duration of response, had a different mechanism of resistance, and was able to deplete normal B cells better than pinatuzumab vedotin. These studies provide evidence that anti-CD22-(LC:K149C)-SN36248 has the potential for longer duration of response and more efficacy in indolent NHL than MMAE ADCs and may provide the opportunity to improve outcomes for patients with NHL.


Aminobenzoates/therapeutic use , Immunoconjugates/therapeutic use , Lymphoma, Non-Hodgkin/drug therapy , Oligopeptides/therapeutic use , Sialic Acid Binding Ig-like Lectin 2/metabolism , Aminobenzoates/pharmacology , Animals , Cell Line, Tumor , Haplorhini , Humans , Immunoconjugates/pharmacology , Oligopeptides/pharmacology
11.
MAbs ; 13(1): 1862452, 2021.
Article En | MEDLINE | ID: mdl-33382956

Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound 1) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a seco-cyclopropyl benzoindol-4-one (CBI)-dimer (compound 2) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by P-glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but seco-CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both in vitro and in vivo with multiple cytotoxics. Conjugation of compound 2 to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.


Antibodies, Monoclonal/immunology , Antigens, Surface/immunology , Antineoplastic Agents/immunology , Immunoconjugates/immunology , Oligopeptides/immunology , Xenograft Model Antitumor Assays/methods , Animals , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/immunology , Female , GPI-Linked Proteins/immunology , HEK293 Cells , Humans , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Mice, SCID , Rats, Sprague-Dawley , Tumor Burden/drug effects , Tumor Burden/immunology
12.
Br J Pharmacol ; 176(19): 3805-3818, 2019 10.
Article En | MEDLINE | ID: mdl-31270798

BACKGROUND AND PURPOSE: Polatuzumab vedotin is an antibody-drug conjugate (ADC) being developed for non-Hodgkin's lymphoma. It contains a humanized anti-CD79b IgG1 monoclonal antibody linked to monomethyl auristatin E (MMAE), an anti-mitotic agent. Polatuzumab vedotin binds to human CD79b only. Therefore, a surrogate ADC that binds to cynomolgus monkey CD79b was used to determine CD79b-mediated pharmacological effects in the monkey and to enable first-in-human clinical trials. EXPERIMENTAL APPROACH: Polatuzumab vedotin, the surrogate ADC, and the corresponding antibodies were evaluated in different assays in vitro and in animals. In vitro assessments included binding to peripheral blood mononuclear cells from different species, binding to a human and monkey CD79b-expressing cell line, binding to human Fcγ receptors, and stability in plasma across species. In vivo, ADCs were assessed for anti-tumour activity in mice, pharmacokinetics/pharmacodynamics in monkeys, and toxicity in rats and monkeys. KEY RESULTS: Polatuzumab vedotin and surrogate ADC bind with similar affinity to human and cynomolgus monkey B cells, respectively. Comparable in vitro plasma stability, in vivo anti-tumour activity, and mouse pharmacokinetics were also observed between the surrogate ADC and polatuzumab vedotin. In monkeys, only the surrogate ADC showed B-cell depletion and B-cell-mediated drug disposition, but both ADCs showed similar MMAE-driven myelotoxicity, as expected. CONCLUSIONS AND IMPLICATIONS: The suitability of the surrogate ADC for evaluation of CD79b-dependent pharmacology was demonstrated, and anti-tumour activity, pharmacokinetics/pharmacodynamics, and toxicity data with both ADCs supported the entry of polatuzumab vedotin into clinical trials.


Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Burkitt Lymphoma/drug therapy , CD79 Antigens/antagonists & inhibitors , Immunoconjugates/pharmacology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/chemistry , Antineoplastic Agents/immunology , Binding Sites/drug effects , Burkitt Lymphoma/pathology , CD79 Antigens/immunology , Cell Line , Dose-Response Relationship, Drug , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Macaca fascicularis , Male , Mice , Mice, SCID , Molecular Conformation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Rats , Rats, Sprague-Dawley , Receptors, IgG , Structure-Activity Relationship
13.
Bioconjug Chem ; 30(5): 1356-1370, 2019 05 15.
Article En | MEDLINE | ID: mdl-30966735

This work discloses the first examples of antibody-drug conjugates (ADCs) that are constructed from linker-drugs bearing dimeric seco-CBI payloads (duocarmycin analogs). Several homogeneous, CD22-targeting THIOMAB antibody-drug conjugates (TDCs) containing the dimeric seco-CBI entities are shown to be highly efficacious in the WSU-DLCL2 and BJAB mouse xenograft models. Surprisingly, the seco-CBI-containing conjugates are also observed to undergo significant biotransformation in vivo in mice, rats, and monkeys and thereby form 1:1 adducts with the Alpha-1-Microglobulin (A1M) plasma protein from these species. Variation of both the payload mAb attachment site and length of the linker-drug is shown to alter the rates of adduct formation. Subsequent experiments demonstrated that adduct formation attenuates the in vitro antiproliferation activity of the affected seco-CBI-dimer TDCs, but does not significantly impact the in vivo efficacy of the conjugates. In vitro assays employing phosphatase-treated whole blood suggest that A1M adduct formation is likely to occur if the seco-CBI-dimer TDCs are administered to humans. Importantly, protein adduct formation leads to the underestimation of total antibody (Tab) concentrations using an ELISA assay but does not affect Tab values determined via an orthogonal LC-MS/MS method. Several recommendations regarding bioanalysis of future in vivo studies involving related seco-CBI-containing ADCs are provided based on these collective findings.


Alpha-Globulins/chemistry , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dimerization , Haplorhini , Humans , Immunoconjugates/chemistry , Mice , Rats , Xenograft Model Antitumor Assays
14.
Blood Cancer J ; 9(2): 17, 2019 02 04.
Article En | MEDLINE | ID: mdl-30718503

FcRH5 is a cell surface marker enriched on malignant plasma cells when compared to other hematologic malignancies and normal tissues. DFRF4539A is an anti-FcRH5 antibody-drug conjugated to monomethyl auristatin E (MMAE), a potent anti-mitotic agent. This phase I study assessed safety, tolerability, maximum tolerated dose (MTD), anti-tumor activity, and pharmacokinetics of DFRF4539A in patients with relapsed/refractory multiple myeloma. DFRF4539A was administered at 0.3-2.4 mg/kg every 3 weeks or 0.8-1.1 mg/kg weekly as a single-agent by intravenous infusion to 39 patients. Exposure of total antibody and antibody-conjugate-MMAE analytes was linear across the doses tested. There were 37 (95%) adverse events (AEs), 8 (21%) serious AEs, and 15 (39%) AEs ≥ grade 3. Anemia (n = 10, 26%) was the most common AE considered related to DFRF4539A. Two cases of grade 3 acute renal failure were attributed to DFRF4539A. There were no deaths; the MTD was not reached. DFRF4539A demonstrated limited activity in patients at the doses tested with 2 (5%) partial response, 1 (3%) minimal response, 18 (46%) stable disease, and 16 (41%) progressive disease. FcRH5 was confirmed to be expressed and occupied by antibody post-treatment and thus remains a valid myeloma target. Nevertheless, this MMAE-based antibody-drug-conjugate targeting FcRH5 was unsuccessful for myeloma.


Antineoplastic Agents, Immunological/therapeutic use , Immunoconjugates/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Receptors, Fc/antagonists & inhibitors , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/pharmacokinetics , Biomarkers , Drug Monitoring , Drug Resistance, Neoplasm , Female , Follow-Up Studies , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/adverse effects , Immunoconjugates/pharmacokinetics , Immunophenotyping , Male , Middle Aged , Recurrence , Retreatment , Treatment Outcome
15.
Clin Cancer Res ; 25(4): 1358-1368, 2019 02 15.
Article En | MEDLINE | ID: mdl-29959143

PURPOSE: The treatment of acute myeloid leukemia (AML) has not significantly changed in 40 years. Cytarabine- and anthracycline-based chemotherapy induction regimens (7 + 3) remain the standard of care, and most patients have poor long-term survival. The reapproval of Mylotarg, an anti-CD33-calicheamicin antibody-drug conjugate (ADC), has demonstrated ADCs as a clinically validated option to enhance the effectiveness of induction therapy. We are interested in developing a next-generation ADC for AML to improve upon the initial success of Mylotarg. EXPERIMENTAL DESIGN: The expression pattern of CLL-1 and its hematopoietic potential were investigated. A novel anti-CLL-1-ADC, with a highly potent pyrrolobenzodiazepine (PBD) dimer conjugated through a self-immolative disulfide linker, was developed. The efficacy and safety profiles of this ADC were evaluated in mouse xenograft models and in cynomolgus monkeys. RESULTS: We demonstrate that CLL-1 shares similar prevalence and trafficking properties that make CD33 an excellent ADC target for AML, but lacks expression on hematopoietic stem cells that hampers current CD33-targeted ADCs. Our anti-CLL-1-ADC is highly effective at depleting tumor cells in AML xenograft models and lacks target independent toxicities at doses that depleted target monocytes and neutrophils in cynomolgus monkeys. CONCLUSIONS: Collectively, our data suggest that an anti-CLL-1-ADC has the potential to become an effective and safer treatment for AML in humans, by reducing and allowing for faster recovery from initial cytopenias than the current generation of ADCs for AML.


Antibodies, Anti-Idiotypic/pharmacology , Immunoconjugates/pharmacology , Lectins, C-Type/immunology , Leukemia, Myeloid, Acute/drug therapy , Receptors, Mitogen/immunology , Animals , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Mice , Receptors, Mitogen/antagonists & inhibitors , Receptors, Mitogen/genetics , Sialic Acid Binding Ig-like Lectin 3/genetics , Sialic Acid Binding Ig-like Lectin 3/immunology , Xenograft Model Antitumor Assays
16.
MAbs ; 10(8): 1312-1321, 2018.
Article En | MEDLINE | ID: mdl-30183491

Few treatment options are available for acute myeloid leukemia (AML) patients. DCLL9718A is an antibody-drug conjugate that targets C-type lectin-like molecule-1 (CLL-1). This receptor is prevalent on monocytes, neutrophils, and AML blast cells, and unlike CD33, is not expressed on hematopoietic stem cells, thus providing possible hematopoietic recovery. DCLL9718A comprises an anti-CLL-1 IgG1 antibody (MCLL0517A) linked to a pyrrolobenzodiazepine (PBD) dimer payload, via a cleavable disulfide-labile linker. Here, we characterize the in vitro and in vivo stability, the pharmacokinetics (PK) and pharmacodynamics (PD) of DCLL9718A and MCLL0517A in rodents and cynomolgus monkeys. Three key PK analytes were measured in these studies: total antibody, antibody-conjugated PBD dimer and unconjugated PBD dimer. In vitro, DCLL9718A, was stable with most (> 80%) of the PBD dimer payload remaining conjugated to the antibody over 96 hours. This was recapitulated in vivo with antibody-conjugated PBD dimer clearance estimates similar to DCLL9718A total antibody clearance. Both DCLL9718A and MCLL0517A showed linear PK in the non-binding rodent species, and non-linear PK in cynomolgus monkeys, a binding species. The PK data indicated minimal impact of conjugation on the disposition of DCLL9718A total antibody. Finally, in cynomolgus monkey, MCLL0517A showed target engagement at all doses tested (0.5 and 20 mg/kg) as measured by receptor occupancy, and DCLL9718A (at doses of 0.05, 0.1 and 0.2 mg/kg) showed strong PD activity as evidenced by notable reduction in monocytes and neutrophils.


Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/metabolism , Acute Disease , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Area Under Curve , Benzodiazepines/immunology , Benzodiazepines/therapeutic use , Humans , Immunoconjugates/immunology , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Lectins, C-Type/immunology , Leukemia, Myeloid/blood , Macaca fascicularis , Metabolic Clearance Rate , Mice , Pyrroles/immunology , Pyrroles/therapeutic use , Rats , Receptors, Mitogen/immunology , Species Specificity
17.
MAbs ; 10(5): 738-750, 2018 07.
Article En | MEDLINE | ID: mdl-29757698

For antibody-drug conjugates (ADCs) that carry a cytotoxic drug, doses that can be administered in preclinical studies are typically limited by tolerability, leading to a narrow dose range that can be tested. For molecules with non-linear pharmacokinetics (PK), this limited dose range may be insufficient to fully characterize the PK of the ADC and limits translation to humans. Mathematical PK models are frequently used for molecule selection during preclinical drug development and for translational predictions to guide clinical study design. Here, we present a practical approach that uses limited PK and receptor occupancy (RO) data of the corresponding unconjugated antibody to predict ADC PK when conjugation does not alter the non-specific clearance or the antibody-target interaction. We used a 2-compartment model incorporating non-specific and specific (target mediated) clearances, where the latter is a function of RO, to describe the PK of anti-CD33 ADC with dose-limiting neutropenia in cynomolgus monkeys. We tested our model by comparing PK predictions based on the unconjugated antibody to observed ADC PK data that was not utilized for model development. Prospective prediction of human PK was performed by incorporating in vitro binding affinity differences between species for varying levels of CD33 target expression. Additionally, this approach was used to predict human PK of other previously tested anti-CD33 molecules with published clinical data. The findings showed that, for a cytotoxic ADC with non-linear PK and limited preclinical PK data, incorporating RO in the PK model and using data from the corresponding unconjugated antibody at higher doses allowed the identification of parameters to characterize monkey PK and enabled human PK predictions.


Algorithms , Antibodies, Monoclonal/pharmacokinetics , Immunoconjugates/pharmacokinetics , Models, Biological , Sialic Acid Binding Ig-like Lectin 3/immunology , Animals , Antibodies, Monoclonal/immunology , Cell Line, Tumor , HEK293 Cells , Humans , Immunoconjugates/immunology , Macaca fascicularis , Prospective Studies , Species Specificity
18.
Mol Cancer Ther ; 17(3): 677-685, 2018 03.
Article En | MEDLINE | ID: mdl-29348271

Antibody-drug conjugates (ADC) have become important scaffolds for targeted cancer therapies. However, ADC exposure-response correlation is not well characterized. We demonstrated that intratumor payload exposures correlated well with the corresponding efficacies of several disulfide-linked ADCs, bearing an DNA alkylating agent, pyrrolo[2,1-c][1,4]benzodiazepine-dimer (PBD), in HER2-expressing xenograft models. The correlation suggests that a threshold concentration of intratumor payload is required to support sustained efficacy and an ADC can deliver an excessive level of payload to tumors that does not enhance efficacy ("Plateau" effect). In contrast to tumor PBD concentrations, related assessments of systemic exposures, plasma stability, and drug-to-antibody ratio changes of related ADCs did not consistently rationalize the observed ADC efficacies. A minimal efficacious dose could be determined by ADC dose-fractionation studies in the xenograft models. Mechanistic investigations revealed that both linker immolation and linker disulfide stability are the key factors that determine intratumor PBD concentrations. Overall, this study demonstrates how a linker design can impact ADC efficacy and that the intratumor exposure of a payload drug as the molecular mechanism quantitatively correlate with and predict the antitumor efficacy of ADCs. Mol Cancer Ther; 17(3); 677-85. ©2018 AACR.


Immunoconjugates/pharmacology , Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Animals , Antibodies/chemistry , Antibodies/immunology , Antibodies/pharmacology , Benzodiazepines/chemistry , Benzodiazepines/pharmacokinetics , Benzodiazepines/pharmacology , Cell Line, Tumor , Drug Liberation , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Neoplasms/metabolism , Neoplasms/pathology , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Tumor Burden/drug effects
19.
Cancer Res ; 77(24): 7027-7037, 2017 12 15.
Article En | MEDLINE | ID: mdl-29046337

Antibody-drug conjugates (ADC) are designed to selectively bind to tumor antigens via the antibody and release their cytotoxic payload upon internalization. Controllable payload release through judicious design of the linker has been an early technological milestone. Here, we examine the effect of the protease-cleavable valine-citrulline [VC(S)] linker on ADC efficacy. The VC(S) linker was designed to be cleaved by cathepsin B, a lysosomal cysteine protease. Surprisingly, suppression of cathepsin B expression via CRISPR-Cas9 gene deletion or shRNA knockdown had no effect on the efficacy of ADCs with VC(S) linkers armed with a monomethyl auristatin E (MMAE) payload. Mass spectrometry studies of payload release suggested that other cysteine cathepsins can cleave the VC(S) linker. Also, ADCs with a nonprotease-cleavable enantiomer, the VC(R) isomer, mediated effective cell killing with a cysteine-VC(R)-MMAE catabolite generated by lysosomal catabolism. Based on these observations, we altered the payload to a pyrrolo[2,1-c][1,4]benzodiazepine dimer (PBD) conjugate that requires linker cleavage in order to bind its DNA target. Unlike the VC-MMAE ADCs, the VC(S)-PBD ADC is at least 20-fold more cytotoxic than the VC(R)-PBD ADC. Our findings reveal that the VC(S) linker has multiple paths to produce active catabolites and that antibody and intracellular targets are more critical to ADC efficacy. These results suggest that protease-cleavable linkers are unlikely to increase the therapeutic index of ADCs and that resistance based on linker processing is improbable. Cancer Res; 77(24); 7027-37. ©2017 AACR.


Antibodies, Monoclonal/metabolism , Antineoplastic Agents/metabolism , Cathepsin B/physiology , Immunoconjugates/metabolism , Prodrugs/metabolism , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Cathepsin B/metabolism , Cell Line, Tumor , Cells, Cultured , Citrulline/metabolism , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Immunoconjugates/therapeutic use , Oligopeptides , Prodrugs/therapeutic use , Proteolysis , Valine/metabolism
20.
ACS Med Chem Lett ; 8(10): 1037-1041, 2017 Oct 12.
Article En | MEDLINE | ID: mdl-29057047

The tubulysins are promising anticancer cytotoxic agents due to the clinical validation of their mechanism of action (microtubule inhibition) and their particular activity against multidrug-resistant tumor cells. Yet their high potency and subsequent systemic toxicity make them prime candidates for targeted therapy, particularly in the form of antibody-drug conjugates (ADCs). Here we report a strategy to prepare stable and bioreversible conjugates of tubulysins to antibodies without loss of activity. A peptide trigger along with a quaternary ammonium salt linker connection to the tertiary amine of tubulysin provided ADCs that were potent in vitro. However, we observed metabolism of a critical acetate ester of the drug in vivo, resulting in diminished conjugate activity. We were able to circumvent this metabolic liability with the judicious choice of a propyl ether replacement. This modified tubulysin ADC was stable and effective against multidrug-resistant lymphoma cell lines and tumors.

...